博碩士論文 952203027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:54.87.61.215
姓名 王妤甄(Yu-Chen Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以微波輔助頂空固相微萃取法萃取水樣中的麝香化合物
(Determination of Synthetic Polycyclic Musk in Aqueous Samples by Microwave-Assisted HS-SPME & GC/MS)
相關論文
★ 以質譜技術探討非共價鍵結蛋白質聚合物之結構★ 以液相層析質譜儀檢測水樣與生物檢體中 全氟界面活性劑之濃度
★ 利用液相層析串聯質譜技術檢測水環境中藥物殘留物之方法開發與應用★ 直鏈式烷基苯基二甲基銨鹽類陽離子型界面活性劑在水環境中微量檢測方法的研究
★ 芳香族磺酸鹽類有機污染物在水環境中的分析與研究★ 以固相萃取及氣相層析質譜儀對水環境中壬基苯酚類 持久性有機污染物之分析與研究
★ 以固相萃取法及氣相層析質譜儀對水環境中動情激素類有機污染物之分析與研究★ 利用熱裂解直接高溫衍生化法快速分析直鏈式烷基三甲基銨鹽之方法建立與探討
★ 利用感應偶合電漿質譜儀檢測半導體製程用化學品中微量金屬不純物之分析研究★ 應用毛細管電泳間接偵測方法分離四級銨鹽界面活性劑
★ 利用毛細管電泳結合線上濃縮方法分離奈磺酸鹽之機制探討★ 快速分析水環境中醫療藥品殘留物之研究與探討
★ 以毛細管電泳法與電灑游離質譜法探討內包錯合物之研究★ 以氣相及液相層析質譜儀分析具荷爾蒙效應物質之方法開發
★ 以離子配對高效液相層析儀檢測螢光增白劑在不同基質中之研究★ 以氣相層析質譜儀檢測具荷爾蒙效應添加劑之方法開發與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人工合成麝香化合物是一種廣泛被使用在清潔劑、香水、洗髮精和其他許多個人護理產品的化學物質。根據人工合成麝香化合物的物理性質與化學性質,可被歸類為具疏水性與半揮發性的汙染物。具有這些性質的汙染物在進入環境後可透過食物鏈造成生物放大效應。目前的文獻報導指出,在空氣、淡水、海水和底泥中分別都能檢測出多環類麝香化合物的存在。根據這些文獻也能看出多環類麝香化合物在自然環境中的流佈情形。由於多環類麝香化合物具有高脂溶性,在水生動物的體內也能見到這類化合物的蹤跡,甚至在人類的脂肪組織或母乳中也存在著多環類麝香化合物。
  在本篇研究中,發展微波輔助固態微萃取法(Microwave-Assisted Headspace Solid-Phase Microextraction,簡稱MA-HS-SPME)當作樣品的前處理步驟,並使用此方法從環境水樣萃取六個常見的多環類麝香化合物,再結合氣相層析質譜儀做為檢測工具。本研究探討幾個影響固相微萃取的因素(如萃取時間、微波爐的瓦數、添加鹽類的量等)並做最佳化。最佳化的萃取條件則是取20 mL水樣置於40 mL萃取瓶(水樣體積與頂空體積為1:1),添加4 g NaCl,使用65 ?m PDMS/DVB的纖維在180 W下加熱並萃取4分鐘。偵測極限(Limit of Detection,簡稱LOD)範圍為0.05至0.1 ng/L之間。定量極限(Limit of Quantification,簡稱LOQ)則低於0.2 ng/L。在環境水樣中,HHCB與AHTN為主要被檢出的多環類麝香化合物,以標準添加法定量結果介於1.2至37.3 ng/L之間,回歸係數則高於0.981。
  本研究所發展的微波輔助頂空固相微萃取法結合氣相層析質譜儀搭配選擇離子偵測模式的方法,具有高靈敏度與穩定的檢測結果。可以用來檢測環境水樣中多環麝香化合物的存在。
摘要(英) Synthetic musk fragrances are a group of chemicals used widely in detergents, perfumes, shampoos, and many other personal care products. According to their physical and chemical properties, they are in common with many hydrophobic and semivolatile organic pollutants that are known to biomagnify through the food chain. The occurrence of synthetic polycyclic musks, a group of the most concern synthetic musk fragrances currently, has been reported in air, freshwater, seawater and sediment suggesting that they are widespread contaminants in the environment. Because of their highly lipophilic properties, polycyclic musks have been also found in aquatic biota, such as mussels and fish, and even in human adipose tissue and breast milk. These compounds have been shown to demonstrate estrogenic activities, even higher concentrations of synthetic polycyclic musks in women’’s bloods have been correlated to higher rate of miscarriage.
In this study, the sample pretreatment technique of microwave-assisted headspace solid-phase microextraction (MA-HS-SPME) has been developed and studied for the extraction of six commonly used synthetic polycyclic musks (i.e., Galaxolide (HHCB), Tonalide (AHTN), Celestolide (ADBI), Traseolide (ATII), Cashmeran (DPMI) and Phantolide (AHMI)) in aqueous samples prior to gas chromatography-mass spectrometry (GC-MS) analysis. The effects of various extraction parameters (i.e., extraction time, microwave power and addition of salt) for the quantitative extraction of these polycyclic musks by MA-HS-SPME were systematically investigated and optimized. The analytes can be extracted by 65 ?m PDMS/DVB fiber under 180 W microwave power for 4 min, 20 mL water sample added 4 g NaCl was put in 40 mL vial with headspace 20 mL (the ratio of sample : headspace = 1:1, v/v). The limit of detection (LOD) ranged from 0.05 to 0.1 ng/L and the limit of quantification (LOQ) was less than 0.2 ng/L. Preliminary results show that HHCB and AHTN were two commonly detected polycyclic musks in real environmental samples, ranging from 1.2 to 37.3 ng/L via standard addition method with correlation coefficient (r2) above 0.981. The analytical procedure developed herein demonstrated that the MA-HS-SPME and GC-MS-SIM methods are reliable, sensitive and offer a convenient analytical technique for trace determination of polycyclic musks in various water samples.
關鍵字(中) ★ 微波輔助
★ 頂空固相微萃取法
★ 氣相層析質譜儀
★ 多環麝香化合物
關鍵字(英) ★ Polycyclic Musk
★ GC/MS
★ HS-SPME
★ Microwave-assisted
論文目次 中文摘要 I
英文摘要 III
謝誌 V
目錄 VI
圖目錄 X
表目錄 XII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目標 4
第二章 文獻回顧 5
2-1 新興污染物 5
2-1-1 新興污染物的來源 5
2-1-2 新興污染物的隱憂 8
2-1-3 多環類麝香化合物 9
2-1-4 多環類麝香化合物毒性 13
2-1-5 相關研究文獻 18
2-2 微波 27
2-2-1 歷史沿革 27
2-2-2 微波簡介 28
2-2-3 加熱原理 29
2-2-4 微波裝置 30
2-2-5 影響微波萃取的因素 31
2-2-6 相關應用 34
2-3 固相微萃取法 35
2-3-1 固相微萃取歷史沿革與發展 36
2-3-2 固相微萃取法的原理 40
2-3-3 頂空固相微萃取法 42
2-3-4 非平衡萃取 45
2-4 氣相層析質譜儀 49
2-4-1 四極矩質譜儀 51
2-4-2 選擇離子偵測法 53
2-5 標準添加法 55
第三章 實驗步驟與樣品分析 58
3-1 實驗藥品與設備 58
3-1-1 實驗藥品 58
3-1-2 儀器設備 59
3-2 實驗步驟 61
3-2-1 標準品的配製 61
3-2-3 氣相層析質譜儀的參數設定 61
3-2-2 MA-HS-SPME裝置 63
3-2-3 操作流程 64
3-2-4 實驗探討 65
3-3 水樣採集 67
3-4 真實樣品測樣檢測定量 68
第四章 結果與討論 69
4-1 氣相層析質譜儀對多環類麝香化合物的測定 69
4-1-1 多環類麝香化合物的分析 69
4-1-2 儀器的偵測極限 69
4-2 固相微萃取法熱脫附條件的最佳化 75
4-2-1 熱脫附溫度 75
4-2-2 熱脫附時間 77
4-2-3 熱脫附深度 79
4-3 SPME纖維上的殘留率 81
4-4 微波熱能設定 83
4-4-1 加熱瓦數設定 83
4-4-2 加熱時間設定 85
4-5 模擬水樣最佳化 87
4-5-1 水樣與頂空區域的體積比 87
4-5-2 NaCl添加量 90
4-6 微波輔助頂空固相微萃取法的最佳化結果 93
4-7 傳統加熱法與微波輔助加熱法的比較 94
4-8 SPME標準品的檢量線 96
4-9 真實水樣定量 98
第五章 結論與建議 109
5-1 結論 109
5-2 建議 109
第六章 參考文獻 110
附錄 116
參考文獻 1.Arthur,C.L.; Killam, L.M.; Buchholz, K.D.; Pawliszyn, J.; Berg, J.R., Automation and optimization of solid-phase microextraction, Anal. Chem., 1992, 64, 1960-1966.
2.Arthur, C.L.; Pawliszyn, J., Solid phase microextraction with thermal desorption using fused silica optical fibers, Anal. Chem., 1990, 62, 2145-2148.
3.Atkins, P.; Locke, J.W., Atkins' Physical Chemistry, 7th ed., Oxford University Press, 2002.
4.Balk, F.; Ford, R.A., Environmental risk assessment for the polycyclic musks AHTN and HHCB in the EU: Ⅰ. Fate and exposure assessment, Toxicol. Lett., 1999, 111, 57-79.
5.Battaglin, W.; Drewes, J.; Bruce, B.; McHugh, M., Introduction: contaminants of emerging concern in the environment, Water Resour. IMPACT, 2007, 9, 3-4.
6.Belardi, R.G.; Pawliszyn, J.,The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns, Water Pollut. Res. J. Can., 1989, 24, 179-182.
7.Bester, K., Personal Care Compounds in the Environment: Pathways, Fate, and Methods for Determination, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007.
8.Chen, L.; Song, D.; Tian, Y.; Ding, L.; Yu, A.; Zhang, H., Application of on-line microwave sample-preparation techniques, Trends Anal. Chem., 2008, 27, 151-159.
9.Chou, Y-J; Dietrich, D.R., Toxicity of nitromusks in early lifestage of south african clawed frog (Xenopus laevis) and zebrafish (Danio rerio), Toxicol. Lett., 1999, 11, 17-25.
10.Cole, K.S.; Cole, R.H., Dispersion and absorption in dielectrics, J. Chem. Phys., 1941, 9, 341–351.
11.Dietrich, D.R.; Hitafeld, B.C., Bioaccumulation and ecotoxicity of synthetic musks in the aquatic environmnt, The Handbook of Environmental Chemistry, Springer Berlin / Heidelberg, 2004, 3, 233-244.
12.Dietrich, D.R.; Chou, Y.J., Ecotoxicity of Musks, Pharmaceuticals and Personal Care Products in the Environment; Scientific and Regulatory Issues, American Chemical Society, 2001, 156-167.
13.Ford, R.A.; Hawkins, D.R.; Schwarzenbach, R.; Api, A.M., The systemic exposure to the polycyclic musks, AHTN and HHCB, under conditions of use as frangrances ingredients: evidence of lack of complete absorption from a skin reservoir, Toxicol. Lett., 1999, 111, 133-142.
14.Gatermann, R.; Biselli, S.; Hűhnerfuss, H.; Rimkus, G.G.; Hecker, M.; Karbe, L., Sythetic musks in the environmennt. Part 1: Species-dependent bioaccumulation of polycyclic and nitro musk fragrances in freshwater fish and mussels, Arch. Environ. Con. Tox., 2002, 42, 437-446.
15.Ganzler, K.; Salgó, A.; Valkó, K., A novel sample preparation method for chromatography, J. Chromatog., 1986, 371, 299-306.
16.Giddings, J.M.; Salvito, D.; Putt, A.E., Acute toxicity of 4-amino musk xylene to daphnia magna in laboratory water and natural water, Water Res., 2000, 34, 3686-3689.
17.Glassmeyer, S.T., The cycle of emerging contaminants, Water Resour. IMPACT, 2007, 9, 5-7.
18.Han, G.Z.; Chen, M.D., Microwave peak absorption frequency of liquid, Sci. China Ser. G-Phys. Mech. Astron., 2008, 51, 1254-1263.
19.Harris, D.C., Quantitative chemical analysis, 6th ed., W.H. Freeman and Company, 2002.
20.Haque, K.E., Microwave energy for mineral treatment processes-a brief view, Int. J. Process., 1999, 57, 1-24.
21.Helbing, K.S.; Schmid, P.; Schlatter, C., The trace analysis of musk Xylene in biological samples: Problem associated with its ubiquitois occurrence, Chemosphere, 1994, 29, 477-484.
22.Heberer, T.; Gramer, S.; Stan, H-J., Occurrence and distribution of organic contaminants in the aquatic system in Berlin, Germany. Part 3. Determination of synthetic musks in Berlin surface water applying solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS), Acta Hydroch. Hydrob., 1999, 27, 150-156.
23.Holtz S., There is no “Away.” Pharmaceuticals, personal care products, and endocrine-disrupting substances: Emerging contaminants detected in water, Canadian institude for environmental law and policy, 2006.
24.Jiu, A., Solid phase microextraction for quantitative analysis in nonequilibrium situations, Anal. Chem., 1997a, 69, 1230-1236.
25.Jiu, A., Headspace solid phase microextraction. Dynamics and quantitative analysis before reaching a partition equilibrium, Anal. Chem., 1997b, 69, 3260-3266.
26.Jiu, A., Solid-phase microextraction in headspace analysis. Dynamics in non-steady-state mass transfer, Anal. Chem., 1998, 70, 4822-4826.
27.Kataoka, H.; Lord, H.L.; Pawliszyn, J., Applications of solid-phase microextraction in food analysis, J. Chromatogr. A, 2002, 880, 35-62.
28.Kingston, H.M.; Jassie, L.B., Introduction to microwave sample preparation: Theory and practice, American Chemical Society, 1988, 7-31.
29.Kokot-Helbling, K.; Schmid, P.; Schlatter, C., Musk xylene residues in human. Exposure pathways, pharmacokinetics, and toxicological importance, Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und Hygiene, 1995, 86, 1-13.
30.Liaw, C.H.; Wang, J.S.P.; Greenhorn, R.A.; Chao, K.C., Kinetics of fixed-bed adsorption: A new solution, AIChE J. 1979, 25, 376-381.
31.Luque-García, J.L.; Luque de Castro, M.D., Where is microwave-base analytical equipment for solid sample pre-treatment going?, Trends Anal. Chem., 2003, 22, 90-98
32.McCarty, L.S.; Mackay, D.; Smith, A.D.; Ozburn, G.W.; Dixon, D.G., Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: Neutral narcotic organics, Environ. Toxico. Chem., 1992, 11, 917-930.
33.Nakata, H., Occurrence of synthetic musk fragrances in marine mammals and sharks from Japanese coastal waters, Environ. Sci. Technol., 2005, 39, 3430-3434.
34.Peck, A.M., Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices, Anal. Bioanal. Chem., 2006, 386, 907-939.
35.Petrović, M.; Gonzale, S.; Barceló, D., Analysis and removal of emerging contanminants in wastewater and drinking water, Trends Anal. Chem., 2003, 22, 685-696.
36.Premysl, S., Risk evaluztion of dietary and dermal exposure to musk fragrances, The Handbook of Environmental Chemistry, Springer Berlin / Heidelberg, 2004, 3, 281-310.
37.Riedel, J.; Birner, G.; van Dropp, C.; Neumann ,H.G; Dekant, W., Haemoglobin binding of a musk xylene metabolite in man, Xenobiotica, 1999, 29, 573-582.
38.Riedel, J.; Dekant, W., Biotransformation and toxicokinetics of musk xylene in humans, Toxicol. Appl. Pharm., 1999, 157, 145-155.
39.Rimkus, G.G., Polycyclic musk fragrances in the aquatic environment, Toxicol. Lett., 1999, 111, 37-56.
40.Seinen, W.; Lemmen, J.G.; Pieters, R.H.H.; Verbruggen, E.M.J.; van der Burg, B., AHTN and HHCB show weak estrogenic – but no uterotrophic activity, Toxicol. Lett., 1999, 111, 161-168.
41.Skoog, D.A.; Holler, F.J.; Crouch, S.R., Principles of instrumental analysis, 6th ed., Thomson Learning, 2006
42.Smith, F.E.; Arsenault, E.A., Microwave-assisted sample preparation in analytical chemistry, Talanta, 1996, 43, 1207-1268.
43.Spencer, P.S.; Bischoff-Fenton, M.C.; Moreno, O.M.; Opdyke, D.L.; Ford, R.A., Neurotoxic properties of musk ambrette, Toxicol. Appl. Pharm., 1984, 75, 571-575.
44.Tas, J.W.; Balk, F.; Ford, R.A.; van der Plassche, E.J., Environmental risk assessment of musk ketone and musk xylene in the netherlands in accordance with the EU-TGD, Chemosphere, 1997, 35, 3686-3715.
45.Yang, R.T., Gas separation by adsorption processes, Butterworth/Boston, 1987.
46.Zhang, Z.; Pawliszyn, J., Headspace solid-phase microextraction, Anal. Chem., 1993, 65, 1843-1852.
47.Zhang, Z.; Pawliszyn, J., Quantitative extraction using an internally cooled solid phase microextraction, Anal. Chem., 1995, 67, 34-43.
指導教授 丁望賢(Wang-Hsien Ding) 審核日期 2009-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明