博碩士論文 952203048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:34.204.202.44
姓名 江建宏(Chien-Hung Chiang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 高品質導電聚苯胺薄膜的合成及應用
(Synthesis and Applications of HighQuality Polyaniline Films)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討
★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池
★ 染料敏化太陽能電池用二茂鐵系統電解質的探討★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池
★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用★ Design and Synthesis of Ruthenium Dyes for High Open-circuit Voltage Dye-sensitized Solar Cells
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 電子產品的透明電極目前用的主要材料為透明導電氧化物(transparent conductive oxide,簡稱TCO) ,常用的TCO為ITO (銦錫氧化物)與FTO (氟摻雜的氧化錫),TCO的導電度雖高但撓曲性不好,不適用於未來的明星科技產業-軟性電子(Flexible Electronics)上。如何製造出一質輕、可撓曲、便宜、穩定且高導電度的電極,是發展軟性電子上一個非常重要的關鍵,本論文的主要研究是如何合成高品質(高導電度、透明度及穩定性)的聚苯胺膜以擴大其用途。我們利用三種簡單的方法來提高聚苯胺膜的導電度,ㄧ為在同步聚合成膜時加入極微量的苯酚添加劑;二則是使用表面型態緻密的載體來沉積苯胺膜;三是利用具有高結晶性的載體來增加聚苯胺膜的規則度。所製得之聚苯胺膜可應用於偵測生物體內左旋維他命C含量、製作導電圖騰、及取代DSSC中Pt作為氧化還原催化劑。導電高分子在實際的應用上除了有導電度低的缺點,另一項大瓶頸即是不易溶解於一般的有機溶劑,雖引進各種取代基可以增加聚苯胺溶解度,但卻造成導電度的大幅度下降。因此本論文使用一種含氟的低沸點溶劑來溶解大量的摻雜態聚苯胺,由此溶液所製備之聚苯胺膜除具有好的規則度與導電度,此簡單的鍍膜製程可以擴展聚苯胺的應用,如取代DSSC中Pt作為催化劑。
摘要(英) The transparent electrode of the electronics is mainly made with transparent conductive oxide (abbreviated as TCO). ITO (indium tin oxide) and FTO (Fluorine tin oxide) are two of the most commonly used TCO. The conductivity of TCO is high but not flexible, not suitable for applying in the flexible electronics. How to produce an electrode with light weight, flexible, cheap, stable and high conductivity is a very important key point for developing the flexible electronics. This thesis is focus on the synthesis of high quality (high conductivity, transparency and stability) polyaniline (PANI) film to expand its applications. We utilize three simple methods to improve the conductivity of PANI, Fisrt: in situ polymerization of aniline in the presence of a very small amount of phenol additive; Second-: using substrates with dense morphology to deposit PANI film; Third: using high crystalline substrates to increase the ordering of PANI chains deposited on them. The applications of the as-prepared PANI films in sensing ascorbic acid in the organism, to make conducting patterns in a simple and economic way, and to replace Pt as a redox catalyst in dye-sensitized solar cells (DSSCs) were demonstrated. Furthermore, in the real applications of PANI the solubility is also a problem since doped PANI has very poor solubility in common organic solvents. In this thesis, we used a high volatile fluorine-containing solvent to dissolve large amount of doped PANI. PANI film fabicated from this solution has high crystallinity and conductivity. The simple solution process can be expanded the application of PANI such as replace Pt as a redox catalyst in DSSCs.
關鍵字(中) ★ 溶解度
★ 染料敏化太陽能電池
★ 高分子對電極
★ 聚苯胺
關鍵字(英) ★ PANI
★ DSSCs
★ solubility
★ polymer counter electrode
論文目次 中文摘要...................................................I
英文摘要..................................................II
目錄.....................................................III
圖目錄................................................... VI
表目錄....................................................XV
第一章、緒論...............................................1
1-1、軟性電子產業..........................................1
1-2、導電高分子............................................3
1-3、導電高分子-聚苯胺.....................................5
1-4、聚苯胺之導電機構......................................6
1-5、聚苯胺的UV/Vis/NIR光譜圖..............................8
1-6、影響聚苯胺的導電度因素...............................10
1-7、文獻上提升聚苯胺導電度的方法.........................14
1-8、文獻上提升聚苯胺溶解度的方法.........................16
1-9、高品質聚苯胺薄膜的應用性.............................22
1-9-1、 左旋維他命C之高靈敏度化學感應劑...................22
1-9-1、 軟性導電圖騰的製作................................25
1-9-3、 以高分子催化劑取代染料敏化太陽能電池對電極中的Pt..27
1-10、研究動機............................................30
第二章、實驗部分........................................................34
2-1、實驗藥品.............................................34
2-2、高導電度聚苯胺膜的合成方法...........................36
2-2-1、探討於同步聚合成膜時添加入極微量添加劑對聚苯胺膜導電度的影響..................................................36
2-2-2、探討載體表面型態對同步聚合成膜所得聚苯胺膜導電度的影響........................................................37
2-2-3、 高靈敏度左旋維他命C化學感測測試...................38
2-2-4、聚苯胺的導電圖騰製備及其作為隱形材料的應用.........39
2-2-5、不同結晶性聚苯胺膜的製備、性質探討及其在DSSC上的應用
..........................................................37
2-2-6、導電聚苯胺溶液及DSSC用高分子對電極的製備...........40
2-3、聚苯胺膜厚度的估算方法...............................42
2-4、儀器分析與樣品製備...................................42
2-4-1、紫外光/可見光及近紅外光吸收光譜儀..................42
2-4-2、場發射掃描式電子顯微鏡.............................43
2-4-3、紅外線吸收光譜儀...................................44
2-4-4、X光繞射儀..........................................45
2-4-5、導電原子力顯微鏡...................................45
2-4-6、膜厚測量儀.........................................47
2-4-7、膠體滲透層析儀.....................................48
2-4-8、穿透式電子顯微鏡...................................49
2-4-9、X-光小角度散射儀...................................50
2-4-10、電化學量測系統....................................52
2-4-11、交流阻抗儀........................................53
2-4-12、電位粒徑分佈儀....................................54
2-4-13、太陽光模擬器......................................55
2-5、染料敏化太陽能電池元件的組裝.........................56
第三章、結果與討論........................................58
3-1、探討聚合同時添加微量添加劑對聚苯胺膜的影響...........58
3-2、載體表面型態對沈積其上之聚苯胺膜性質的影響...........73
3-3、聚苯胺膜的應用性.....................................78
3-3-1、左旋維他命C之高靈敏度化學感應劑....................78
3-3-2、軟性導電圖騰的製作.................................91
3-4、 探討載體結晶度對同步聚合沉積其上之聚苯胺膜性質的影..95
3-5、聚苯胺懸浮液之物理、化學性質探討及低成本且高效能高分子
催化劑來取代染料敏化太陽能電池中的Pt.....................119
第四章、結論.............................................137
第五章、參考文獻.........................................139
參考文獻 1. http://www.materialsnet.com.tw/DocView.aspx?id=6830 (工業材料雜誌256期)
2. A. F. Diaz, J. Bargon, “in Handbook of Conducting Polymers, T. A. Skotherim Ed.
3. D. C. Trierd, H. S. Nalwa, J. Wilet&Sons Ltd.,” Handbook of Organic Conductive Molecules and Polymers”1997, 2, 548.
4. C. K. Chiang , C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Lousi, S. C. Gau, A. G. MacDiamid, Phys. Rev. Lett. 1977, 39, 1098.
5. H. Lertherby, J. Chem. Soc. 1962, 15, 16.
6. J. C. Chiang, A.G. MacDiarmid, Synth. Met. 1986, 13, 193.
7. A. G. MacDiarmid, Synth. Met. 1994, 26, 231.
8. D. M. Mohilner, R. N. Adams, J. Am. Chem. Soc. 1962, 84, 3618.
9. A. G. MacDiarmid, J. H. Chiang, Mol. Cryst. Liq. Cryst. 1985, 121, 173.
10. E. M. Genies, A. A. Syed, C. Tsintaris, Mol. Cryst. Liq. Cryst. 1985, 121, 181.
11. A. J. Epstein, J. M. Ginder, R. W. Bigelow, Synth. Met. 1987, 18, 303.
12. A. G. MacDiarmid, A. J. Epstein, Synth. Met. 1997, 29, E409.
13. M. J. Wan, Polym. Sci. Part A: Polym. Chem. 1992, 30, 543.
14. F. Lux, G. Hinrichsen, Synth. Met. 1993, 55, 347.
15. B. Wang, J. Tang, F. Wang, Synth. Met. 1987, 18, 323.
16. A. P. Monkman, P. Adams, Synth. Met. 1991, 41, 891.
17. P. M. McManus, R. J. Cushman, S. C. Yang, J. Phys. Chem. 1987, 91, 744.
18. M. Inoue, R. E. Navarro, M. B. Inouo, Synth. Met. 1989, 30, 199.
19. S. Stafstrom, J. L. Bredas, A. J. Epstein, H. S. Woo, D. B. Tanner, W. S. Huang, A. G. MacDiarmid, Phys. Rev. Lett. 1987, 59, 1464.
20. S. C. K. Misra, M. K. Ram, S. S. Pandey, B. D. Malhotra, S. Chandra, Appl. Phys. Lett. 1992, 61, 1219.
21. J. Libert, J. L. Bredas, A. J. Epsrein, Phys. Rev. B. 1995, 51, 5711.
22. H. Shirakawa, S. Ikeda, Polymer 1971, 2, 231.
23. H. Shirakawa, E. J. Lousi, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, J. Chem. Commum. 1977, 578.
24. S. Bhadra, N. K. Singha, D. Khastgir, Synth. Met. 2006, 156, 1148.
25. S. Bhadra, S. Chattopadhyay, N. K. Singha, D. Khastgir, J Polym Sci Polym Phys. 2007, 45, 2046.
26. S. Bhadra, N. K. Singha, D. Khastgir, Polym Int. 2007, 56, 919.
27. S. Bhadra, N. K. Singha, D. Khastgir, J Appl Polym Sci. 2007, 104, 1900.
28. S. Bhadra, D. Khastgir, Polym Degrad Stab. 2007, 92, 1824.
29. A. G. MacDiarmid, Synth. Met. 1997, 84, 27.
30. S. Bhadra, S. Chattopadhyay, N. K. Singha, D. Khastgir, J Appl Polym Sci. 2008 108, 57.
31. E. R. Holland, S. J. Pomfret, P. N. Adams, L. Abell, A. P. Monkmann , Synth. Met. 1997, 84, 777.
32. P. Kiattibutr, L. Tarachiwin, L. Ruangchuay, A. Sirivat, J. Schwank, React Funct Polym 2002, 53, 29.
33. S. S. Chang, C. G. Wu, J. Phys. Chem. B 2005, 109, 39, 18275.
34. K. Levon, K. H. Ho, W. Y. Zheng, J. Laakso, T. Kärnä, T. Taka, J. E. Österholm, Polymer 1995, 36, 2733.
35. J. A. Malmonge, L. H. C. Mattoso, Synth. Met. 1997, 84, 779.
36. A. G. MacDiarmid, A. J. Epsteint, Synth. Met. 1995, 69, 85.
37. A. G. MacDiarmid, Synth. Met. 1994, 103, 11665.
38. (a) A. G. MacDiarmid, A. J. Epstein, Synth. Met. 1994, 65, 103.
(b) Y. Min, Y. Xia, A. G. MacDiarmid, A. J. Epstein, Synth. Met. 1995, 69, 159.
39. A. G. MacDiarmid, Synth. Met. 1995, 69, 187.
40. P. Rannou, A. Gawlicka, D. Berner, A. Pron, M. Nechtschein, Macromolecules 1998, 31, 3007.
41. P. N. Adams, P. Devasagayam, S. J. Pomfret, L. Abell, A. P. Monkman, J. Phys. Condens. Matter 1998, 10, 8293.
42. C. G. Wu, J. Y. Chen, J. Mater. Chem. 1997, 9, 399.
43. D. M. Sarno, Langmuir 2007, 23, 879.
44. S. S. Chang, C. G. Wu, J. Phys. Chem. B 2005, 109,18275.
45. D. J. Yang, Materials Letters 2008, 62, 4311.
46. A. G. MacDiarmid, A. J. Epstein, Synth. Met. 1995, 69, 85.
47. R. L. Datta, J. N. Sen, J. Am. Chem. Soc. 1917, 39, 747.
48. R. J. kline, M. D. Mcgehee, M. F. Toney, Nature Materials 2006, 5, 222.
49. J. Joo, S. M. Long, J. P. Pouget, E. J. Oh, A. G. MacDiarmid, A. J. Epstein, Phys. Rev. B 1998, 57, 9567.
50. D. S. Sutar, N. Padma, D. K. Aswal, S. K. Deshpande, S. K. Gupta, J. V. Yakhmi, Journal of Colloid and Interface Science 2007, 313, 353.
51. D. S. Sutar, R. Tewari, G.K. Dey, S. K. Gupta, J. V. Yakhmi, Synth. Met. 2009, 159, 1067.
52. Q. Zhou, J. Wang, Y. Ma, C. Cong, F. Wang, Colloid Polym Sci 2007, 285, 405.
53. A. Rahy, D. J. Yang, Materials Letters 2008, 62, 4311.
54. Z. Zhang, J. Deng, M. Wan, Materials Chemistry and Physics 2009, 115, 275.
55. H. Zhang, X. Wang, J. Li, Z. Mo, F. Wang, Polymer 2009, 50, 2674.
56. N. Nuraje, K. Su, N. I. Yang, H. Matsui, ACS Nano 2008, 2, 502.
57. K. Su, N. Nuraje, L. Zhang, I W. Chu, H. Matsui, N. L. Yang, Macromol. Symp. 2009, 279, 1.
58. K. Su, N. Nuraje, L. Zhang, I W. Chu, R. M. Peetz, H. Matsui, N. L. Yang, Adv. Mater. 2007, 19, 669.
59. Y. Wei, W. W. Focke, G. E. Wnek, A. Ray, A. G. MacDiarmid, J. Phys. Chem.1989, 93, 495.
60. M. Leclerc, J. Guay, L. H. Dao, Macromolecules 1989, 22, 649.
61. G. D’Aprano, M. Leclerc, G. Zotti, G. Schiavon, Chem. Mater. 1995, 7, 33.
62. J. W. Chevalier, J. Y. Bergeron, L. H. Dao, Macromolecules 1992, 25, 3325.
63. J. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein, Alan G. MacDiarmid, J. Am. Chem. Soc. 1991, 113, 2665.
64. S. A. Chen, G. W. Hwang , J. Am. Chem. Soc. 1994, 116, 7939.
65. Y. Cao, P. Smith, A. J. Heeger, Synth. Met. 1992, 48, 91.
66. J. Stejskal, I. Sapurina, Journal of Colloid and Interface Science 2004, 274, 489.
67. D. Li, R. B. Kaner, Chem. Commun. 2005, 3286.
68. Q. Chen, M. G. Espey , M. C. Krishna , J. B. Mitchell , C. P. Corpe, G. R. Buettner, E. Shacter , M. Levine, PNAS 2005, 102, 38.
69. Y. Andreu, S. d. Marcos, J. R. Castillo, J. Galbán, Talanta 2005, 65, 1045.
70. H. Iwase, Talanta 2003, 60, 1011.
71. T. Kleszczewski, E. Kleszczewska, Journal of Pharmaceutical and Biomedical Analysis 2002, 29, 755.
72. X. Wu, Y. Diao, C. Sun, J. Yang, Y. Wang, S. Sun, Talanta 2003, 59, 95.
73. B. Nalini, S. S. Narayanan, Anal. Chim. Acta 2000, 405, 93.
74. Z. U. Bae, J. H. Park, S. H. Lee, H. Y. Chang, J. Electroanal. Chem. 1999, 468, 85.
75. A. Ambrosi, A. Morrin, M. R. Smyth, A. J. Killard, Analytica chimica acta 2008, 609, 37.
76. Philip J. O’Connell, Cecile Gormally, Miloslav Pravda, George G. Guilbault, Analytica chimica acta 2001, 431, 239.
77. J. X. Huang, R. B. Kaner, Angew. Chem. Int. Ed. 2004, 43, 5817.
78. G. Erdogdu, A.E. Karagozler, Talanta 1997, 44 , 2011.
79. J. J. Xu, D. M. Zhou, H. Y. Chen, Fres. J. Anal. Chem. 1998, 362, 234.
80. J. J. Sun, D. M. Zhou, H. Q. Fang, H. Y. Chen, Talanta 1998, 45, 851.
81. Y. Andreu, S. d. Marcos, J. R. Castillo, J. Galbán, Talanta 2005, 65, 1045.
82. P. Anilkumar, M. Jayakannan, Langmuir 2008, 24, 9754.
83. Y. Xia, G. Whitesides, Langmuir 1997, 13, 6480.
84. B. W. Jensen, N. Clark, P. Subramanian, R. Helmer, S. Ashraf, G. Wallace, L. Spiccia, D. MacFarlane, Journal of Applied Polymer Science 2007, 104, 3938.
85. Z. Li, B. Ye, X. Hu, X. Maa, X. Zhang, Y. Deng, Electrochemistry Communications 2009, 11, 1768.
86. J. Zhang, T. Hreid, X. Li, W. Guo, L. Wang, X. Shi, H. Su, Z. Yuan, Electrochimica Acta 2010, 55, 3664.
87. Z. Li, B. Ye, X. Hu, X. Ma, X. Zhang, Y. Deng, Electrochemistry Communications 2009, 11, 1768.
88. S. Ameen, M. S. Akhtar, Y. S. Kim, O B. Yang, H. S. Shin, J. Phys. Chem. C 2010, 114, 4760.
89. Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin, L. Fan, Electrochemistry Communications 2008, 10, 1299.
90. http://www.silver-colloids.com/Tutorials/Intro/pcs1.html.
http://www.trendtop.com.tw/particle/Nano_sizer/Zeta_potential.html
91. 陳思蒨, “Applications of PANI and PEDOT as Cathodic Catalysts for Pt-free Dye-Sensitized Solar Cells”, 中央化學所碩士論文.
92. (a) A. G. MacDiarmid, A. J. Epstein, Synth. Met. 1994, 65, 103. (b) Y. Min, Y. Xia, A. G. MacDiarmid, A. J. Epstein, Synth. Met. 1995, 69, 159. (c) O. T. Ikkala, L. O. Pietila, L. Ahjopalo, H. österholm, P. J. Passiniemi, J. Phy. Chem. 1995, 103, 9855.
93. C. J. Boxley, H. S. Wite, C. E. Gardner, J. V. Macpherson, J. Phys. Chem. B 2003, 107, 9677.
94. W. Zheng, M. Angelopoulos, A. J. Epstein, A. G. MacDiarmid, Macromolecules 1997, 30, 2953.
95. R. J. Roe, “Method of X-ray and Neutron Scattering in Polymer Science” Oxford University Press: New York, 2000.
96. U. S. Jeng, C. S. Tsao, C, H. Lee, T. L. Lin, L. Y. Wang, L. Y. Chiang, C. C. Han, J. Phys. Chem. B 1999, 103, 1059.
97. W. Zheng, M. Angelopoulos, A. J. Epstein, A. G. MacDiarmid, Macromolecules 1997, 30, 2953.
98. Y. Xia, G. Whitesides, Langmuir 1997, 13, 6480.
99. C. G. Wu, C. H. Chiang, CrystEngComm 2011, 13, 1406.
100. P. J. O’Connell, C. Gormally, M. Pravda, G. G. Guilbault, Analytica chimica acta 2001, 431, 239.
101. Y. Andreu, S. d. Marcos, J. R. Castillo, J. Galbán, Talanta 2005, 65, 1045.
102. I. Sapurina, A. Riede, J. Stejskal, Synth. Met. 2001, 123, 503.
103. S. Yau, Y. H. Lee, C. Z. Chang, J. Phys. Chem. C 2009, 113, 13758.
104. L. Y. O. Yang, C. Z. Chang, S. H. Liu, C. G. Wu, S. L. Yau, J. Am. Chem. Soc. 2007, 129, 8076.
105. Y. H. Lee, C. Z. Chang, S. L. Yau, L. J. Fan, Y. W. Yang, L. Y. O. Yang, K. Itaya, J. Am. Chem. Soc. 2009, 131, 6468.
106. F. L. Leite, W. F. Alves, M. Mir, Y. P. Mascarenhas, P. S. P. Herrmann, L. H. C. Mattoso, O. N. Oliveira Jr., Appl Phys A 2008, 93, 537.
107. G. Zotti, M. C. Gallazzi, G. Zerbi, S. V. Meille, Synth. Met. 1995, 73, 217.
108. A. B. Kaiser, Rep. Prog. Phys. 2001, 64, 1.
109. N. F. Mott, M. Kaveh, Adv. Phys. 1985, 34, 329.
110. Z. H. Wang, E. M. Scherr, A. G. MacDiarmid, A. J. Epstein, Phys.
Rev. B 1992, 45, 4190.
111. E. T. Kang, K. G. Neoh, T. C. Tan, S. H. Khor, K. L. Tan, Macromolecules 1990, 23, 2918.
112. D. Li, R. B. Kaner, Chem. Commun. 2005, 3286.
指導教授 吳春桂(Chun-Guey Wu) 審核日期 2011-11-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明