博碩士論文 952203055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.188.112.220
姓名 鄭光良(Guang-Liang Jheng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具水熱穩定乙烷基官能基與磺酸官能基之中孔洞材料 SBA-1 的合成與鑑定
(Synthesis and Characterization of Hydrothermally Mesoporous Stable Silicas SBA-1 Functionalized with Ethylane-bridge and Sulfonic Acid Groups)
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇研究主要為合成具高水熱穩定性之中孔洞分子篩,使用 BTEE (1,2-Bis(triethoxysilyl)ethane)及TEOS (Tetraethyl orthosilicate) 為共同矽源,以 C16TEABr (Cetyltriethylammonium bromide) 作為模板試劑,在酸性條件下直接合成含有乙烷有機官能基的 cubic (Pm3n) 中孔洞材料。經由粉末 X-ray 繞射、等溫氮氣吸脫附 (BET)、29Si 及 13C MAS-NMR、掃描電子顯微鏡 (SEM)、熱重分析儀 (TGA) 做鑑定。將模板移除後的樣品在沸水下迴流,藉此與純的 SBA-1 比較其水熱穩定性。然而,結果顯現出在混合矽源下合成其結構在經五天水煮後還保持部分的結構特性,相較於水煮一天結構就崩塌的純 SBA-1,此共同矽源明顯改善其水熱穩定性。
在另一部份則是使用TEOS與 MPTMS ((3-Mercaptopropyl)- trimethoxy silane) 為共同矽源,以 C16TEABr作為模板試劑,在酸性條件下以雙氧水當作氧化劑,利用直接合成將硫基官能基轉變成含有磺酸基有機官能基的中孔洞材料。然而,適量的雙氧水可促進其磺酸基的生成。藉由粉末 X-ray 繞射、等溫氮氣吸脫附 (BET)、29Si 及 13C MAS-NMR 鑑定之。
然而,重金屬的檢測及定量在區域的環境監控、污水管理,甚至生物演變在近年來雖然利用很多不同儀器的技術進行檢測,但在此將利用硫基對不同金屬的吸附性,以固態核磁共振儀鑑定之。除此之外,也發現也許可在不需要雙氧水的形況下,利用銅金屬將硫基轉換為磺酸基。
摘要(英) Hydrothermally stable periodic mesoporous organosilicas with cubic Pm3n frame structures were synthesized by using tetraethoxysilane (TEOS) and 1,2-bis(triethoxysilyl)ethane (BTEE) as silica source and cetyltriethylammonium bromide (CTEABr) as surfactant under acidic conditions.The synthesized materials were characterized by PXRD, SEM, N2 adsorption-desorption, 29Si MAS NMR, 13C CP MAS NMR and TG-DTA techniques. Hydrothermal stability of the synthesized material was evaluated by refluxing the sample under boiling water for various time periods and the results were compared with pure mesoporous silica material (Si-SBA-1). The results showed that the hybrid material is stable up to 5 days in boiling water with a slight decrease in structural properties, whereas Si-SBA-1 structure was collapsed after refluxing for one day. The improved hydrothermal stability of hybrid material is related to more hydrophobic environment induced inside the pore channels due to the presence of integrating ethane groups in the walls of the channels.
On the synthesis of organosulfonic acid-functionalized mesoporous in a one-step approach of co-condensing inorganic–organic reagents in the presence of cetyltriethylammonium bromide (CTEABr) surfactant with in situ oxidation of the thiol groups to the sulfonic acid groups.It is a one-step condensation of tetramethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) in highly acidic medium. During the condensation process, the in situ oxidation of thiol (-SH) group to sulfonic acid (-SO3H) group was facilitated by hydrogen peroxide (30 wt % H2O2). Adsorption and structural properties of the aforementioned PMOs have been studied by nitrogen adsorption and X-ray diffraction, whereas their framework chemistry was quantitatively analyzed by solid-state 13C and 29Si MAS NMR.
The detection and quantification of heavy metal ions are important in plethora of areas such as environmental monitoring, waste water management, developmental biology, and clinical toxicology. A number of techniques have been developed over the years for heavy metal ion analysis. Now, we used solid-state 13C CPMAS (cross polarization magic angle spinning) NMR spectroscopy as a characterization tools to obtain spectroscopic evidence for the heavy metal adsorption. By the way, the conversion of thiol-functionalized SBA-1 to disulfide-functionalized SBA-1 using Cu2+ without hydrogen peroxide was achieved.
關鍵字(中) ★ 水熱穩定
★ 乙烷
★ 硫基
關鍵字(英) ★ Hydrothermally
★ Sulfonic Acid
★ Ethylane-bridge
論文目次 中文摘要................................................................................................... I
英文摘要.................................................................................................. II
目錄......................................................................................................... IV
圖目錄................................................................................................... VIII
表目錄.................................................................................................... XII
第一章序論............................................................................................... 1
1-1 中孔洞分子篩材料歷史.............................................................. 1
1-2 觸媒簡介...................................................................................... 6
1-3 界面活性劑性質簡介.................................................................. 7
1-4 微胞的形成與種類...................................................................... 8
1-5 SBA-1 簡介................................................................................. 10
1-6 SBA-1 的形成機制..................................................................... 12
1-7 官能基化中孔洞分子篩簡介.................................................... 13
1-8 文獻回顧.................................................................................... 15
1-9 表面修飾中孔洞分子篩之應用................................................ 19
1-10 研究動機與目的...................................................................... 22
第二章實驗部分..................................................................................... 23
2-1 藥品............................................................................................ 23
2-2 實驗步驟.................................................................................... 25
2-2.1 合成界面活性劑 CTEABr............................................... 25
2-2.2 合成含乙烷基官能基的SBA-1(BTEE-SBA-1) ............. 25
2-2.3 合成含乙烷基官能基的SBA-1(BTEE-SBA-1) ............. 26
2-2.4 以溶劑萃取法移除SBA-1 孔洞中的模板...................... 29
2-2.5 中孔洞分子材料 SH-SBA-1 吸附金屬離子實驗…..... 30
2-3 實驗設備.................................................................................... 30
2-3.1 實驗合成設備................................................................... 30
2-3.2 實驗鑑定儀器................................................................... 30
2-4 鑑定儀器之原理........................................................................ 31
2-4.1 X 光繞射 (Powdr X-Ray Diffractometer;XRD)............ 31
2-4.2 氮氣吸脫附等溫曲線、表面積 與孔洞特性鑑定......... 34
2-4.3 傅立葉紅外線吸收光譜 (FTIR)...................................... 38
2-4.4 熱重分析儀 (Thermo Gravimetric Analyzer;TGA)...... 40
2-4.5 固態核磁共振 (Solid State NMR)................................... 40
2-4.5-1 去氫偶合 (proton decoupling)................... .............. 41
2-4.5-2 魔角旋轉 (Magic Angle Spinning)............... ........... 41
2-4.5-3 交叉極化 (Cross-Polarization, CP).............. ............ 42
2-4.5-4 異核間作用力 (Heteronuclear Correlation, Hetcor)..43
2-4.6 低真空掃描式電子顯微鏡 (LV-SEM)………………….. 45
2-4.7 元素分析儀 (Elemental Analyzer;EA)........................... 46
2-4.8 感應耦合電漿原子發射光譜分析儀 (ICP-AES)............ 47
第三章 結果與討論................................................................................ 48
3-1 不同比例下混合矽源合成的 BTEE-SBA-1 ........................... 48
3-1-1.1 XRD 結果.................................................................... 48
3-1-1.2 氮氣等溫吸脫附的結果.............................................. 50
3-1-1.3 13C CP/MAS NMR 結果............................................. 54
3-1-1.4 29Si MAS NMR 結果.................................................. 56
3-1-1.5 HETCOR - 2D MAS NMR 結果................................ 60
3-1-1.6 FT-IR 結果........................................ ......... ................ 64
3-1-1.7 TGA 結果.................................................................... 66
3-1-1.8 SEM 結果 .................................................................. 71
3-1-1.9 水氣等溫吸附的結果.................................................. 73
3-1-2 不同水煮時間下探討中孔洞材料 BTEE-SBA-1 ................ 76
3-1-2.1 XRD 結果 .................................................................. 76
3-1-2.2 氮氣等溫吸脫附的結果.............................................. 79
3-2 不等量雙氧水氧化SH-SBA-1 為SO3H-SBA-1 ..................... 89
3-2-1.1 XRD 結果 .................................................................. 89
3-2-1.2 13C CP/MAS NMR 結果 ........................................... 93
3-2-2 氧化不同比例SH-SBA-1 為SO3H-SBA-1 .......................... 97
3-2-2.1 XRD 結果.................................................................... 97
3-2-2.2 氮氣等溫吸脫附的結果.............................................. 99
3-2-2.3 13C CP/MAS NMR 結果.............................................102
3-2-2.4 29Si MAS NMR 結果................................................. 104
3-2-2.5 HETCOR - 2D MAS NMR 結果.............................. 107
3-2-2.6 TGA 結果.................................................................. 110
3-2-2.7 酸催化反應 結果...................................................... 112
3-3 金屬離子的吸附 ..................................................................... 114
3-3-1 XRD 結果......................................................................114
3-3-2 13C CP/MAS NMR 結果 .............................................118
3-3-3 ICP-AES 結果.............................................................. 122
3-3-4 銅離子催化 結果......................................................... 125
3-3-4.1 XRD 結果 ............................................................ 125
3-3-4.2 13C CP/MAS NMR 結果....................................... 127
第四章結論............................................................................................ 129
參考文獻................................................................................................ 130
參考文獻 1. Vaughan, D. E. W. Catal. Today, 1998, 2, 187.
2. Dailey, J. S.; Pinnavaia, T. J. Chem. Mater.
1992, 4, 855-894.
3. Yanagaisawa, T.; Kuroda , K.; Bull, C. K. Chem. Soc.
Japn. 1988, 61, 3743
4. Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuil,
J. C.; Beck, J. S. Nature 1992, 359, 710-712.
5. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonwicz, M.
E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T-W.;
Olson, D. H.; Sheppard, E. W.; Higgins, S. B.;
Schlenker, J. L. J. Am. Chem. Soc. 2002, 114, 10833-
10845.
6. Sayari, A. Chem. Mater. 1996, 8, 1840-1852.
7. Neumann, R.; Khenkin, K. Chem. Commun. 1996, 2643-2644.
8. Charkaborty, B.; Pulikottil, A. C.; Viswanathan, B.
Catal. Lett. 1996, 39, 63.
9. Harthmann, M.; Popll, A.; Kenvan, L. J. Phys. Chem.
1996, 100, 9906-9910.
10. Corma, A.; Navarro, M. T.; Pariente, J. P.; Sanchez,
F. Stud. Surf. Sci. Catal. 1994, 84, 69.
11. Reddy, J. S.; Sayari, A. Chem. Commun. 1995, 2231-2232.
12. Wu, C.-G.; Bein, T. Science 1994, 264, 1757-1759.
13. Wu, C.-G.; Bein, T Science, 1994, 266, 1013-1015.
14. Wu, C.-G.; Bein, T. Chem. Mater., 1994, 6, 1109-1112.
15. (a) Lee, Y. S.; Surjadi, D.; Rathman, J. F. Langmuir
1996, 12, 6202-6210 .
(b) Ko, C. H.; Ryoo, R. J. Chem. Soc. Chem. 1996, 2467.
16. Tsang,S. C.; Davis, J. J.; Green, M. L. H.; Hill, H.
A. O.; Leung, Y. C.Sadler, P. j. Chem. Commun. 1995,
1803-1804.
17. Abe, T.; Tachibana, Y.; Uemtsu, T.; Iwamoto, M. Chem.
Commun. 1995, 1617-1618.
18. Busio, K.; Janchen, J.; van Hooff, J. H. C.
Microporous Mater. 1995, 5, 211-218.
19. Luan, Z.; Zhou, W.; Cheng, C.-F.; Klinowski, J.
Faraday Trans. 1996,91, 5161.
20. Kosslick, H.; Lischke, G.; Walther, G.; Storek, W.;
Martin, A.; Fricke, R. Microporous Mater. 1997, 9, 133- 139.
21. Weglarski, J.; Datka, J.; He,H.; Kilnowski, J. Faraday
Trans. 1996, 92, 5161.
22. Mokaya, R.; Jones, W. Chem. Commun. 1996, 983-984.
23. Zhao, Xiu S.; (Max) Lu , G. Q.; Millar, G. J. Ind.
Eng. Chem. Res. 1996, 35, 2075-2090.
24. IUPAC Manual of Symbols and Terminology, Appendix 2,
Part 1, Colloid and Surface Chemistry, Pure Appl.
Chem. 1972, 31, 57-638.
25. (a) Kresge, C. T.; Leonowicz, M. E.; Vartuli, W. J.;
Beck, C. J. S. Nature, 1992, 359, 710-712.
(b) Beck, J. S.; Vartuli, J. C.; Roth,W. J.;Leonowicz,
M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.;
Olsen, D. H.; Sheppard, E. W.; McCullen, S. B.;
Higgins, J. B.; Schlenker, J.L. J. Am. Chem. Soc.
1992, 114, 10834-10843.
(c) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.;
Vartuli, J. C. (Mobil Oil Corp.), US-A 5098684, 1992
【Chem. Abstr. 1992, 177, 72621】.
26. Vartuli, J. C.; Schmitt, K. D.; Kresge, C. T.; Roth,
W. J.; Leonowicz, M. E.; McCullen, S. B.; Hellring, S.
D.; Beck, J. S.; Schlenker, J. L.; Olsen, D. H.;
Sheppard, E.W. Chem. Mater. 1994, 6, 2317-2326.
27. Vartuli, J. C.; Kresge, C. T.; Roth, W. J.; McCullen,
S. B.; Beck, J. S.; Schmitt, K. D.; Leonowicz, M. E.;
Lutner, J. D.; Sheppard ,E. W. in Proceedings of the
209th ACS National Meeting, Division of Petroleum
Chemistry 1995, pp.21-25.
28. Vartuli, J. C.; Kresge, C. T.; Roth, W. J.; McCullen,
S. B.; Beck, J. S.; Schmitt, K. D.; Leonowicz, M. E.;
Lutner, J. D.; E. W. Sheppard in Advanced Catalysis
and Nanostructured Materials: Modern Synthesis Methods
(Ed: W. R. Moser), Academic Press, New York,1996, pp.1- 19.
29. Ying, J. Y.; Mehnex, C. P. ; Wong, M. S. Synthesis and
Applications of Supramolecular-Templated Mesoporous
Materials. Angew. Chem. Int. Ed 1999, 38, 56-57.
30. (a) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc.
1976, 98, 1729-1742.
(b) Heck, R. F.; Breslow, D. S. J. Am. Chem. Soc.
1961, 83, 4023-4027.
(c) Heck, R. F.; Adv. Organomet. Chem. 1966, 4, 243.
(d) Brown, C. K.; Wilkinson G.; J. Chem. Soc. A. 1970,
2753.
31. Bond, G. C. ‘‘Heterogeneous Catalysis:Principles and
Applications.’’ 2nd ed. Clarendon Press, Oxford,
UK,1987.
32. Miessler, G. L.; Tarr, D.A. ‘‘Inorganic
Chemistry’’ , 2nd ed, Prentice Hall, New York, 1999.
pp. 498.
33. Satterfield, C. N. ‘‘Heterogeneous Catalysis in
practice.’’, McGrew-Hill, New York, 1980.
34. Todros, T. F. “Surfactant”, Academic Press, London,
1984.
35. (a) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B.
W. J. Chem. Soc. Faraday Trans. 1976, 72, 1525-1568.
(b) Israelachvili, J. N.; Mitchell, D. J.; Ninham, B.
W. Biochim. Biophys. Acta 1977, 470, 185-201.
36. Tanford, C. “The Hydrophobic Effect: Formation of
Micelles and Biological Membranes”, Wiley, New York,
1973.
37. Evans, F. D.; Wennerstrom, H. “The Colloidal
Domain”, 2nd Ed, VHC, New York, 1999.
38. (a) Qi, L.; Ma, J.; Cheng, H.; Zhao, Z. “Colloids and
Surfaces A”, 1996, 111, 195-202
(b). Li, Y.; Park, C.-W. Langmuir, 1999, 19, 952-956.
39. Huo, Q.; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier,
T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schüth,
F.; Stucky, G. D. Nature. 1994, 368,317-321.
40. Kim, M. J.; Ryoo, R. Chem. Mater. 1999, 11, 487-491.
41. Schubert, U.; Husing, N. Synthesis of inorganic
materials, chapter 4 , Wiley-Interscience
publications: New York, 2000.
42. (a) Schierbaum, K. D.; Weiss, T.; Velzen, E. U. T.
van; Engbersen, J. F. J.; Reinhoudt, D. N.; Gopel, W.
Science. 1994, 265, 1413-1415.
(b) Sayari, A. Chem. Mater. 1996, 8, 1840-1852.
(c) Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim. A. Y.;
Liu, J.; Kemner, K. M. Science. 1997, 276, 923-926.
43. (a) Liu, J. Feng, X.; Fryxell, G. E.; Wang, L.-Q.;
Kim. A. Y.; Gong, M. L. Adv. Meter. 1998, 10, 161-165.
(b) Moller, K.; Bein, T. Stud. Surf. Sci. Catal. 1998,
117, 53-.
(c) Brunel, D. Microporous Mesoporous Mater. 1999, 27,
329-344.
(d) Impens, N. R. E. N.; Van der Voort, P.; Vansant,
E. F. Microporous Mesoporous Mater. 1999, 28, 217-232.
(e) Clark, J. H.; Macquarrie, D. J.; Wilson, K. Stud.
Surf. Sci. Catal. 2000, 129, 251-.
(f) Walcarius, A.; Etienne, M.; Lebeau, B. Chem.
Mater. 2003, 15, 2161-2173
44. Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Meter.
2000, 12, 1403-1419.
45. (a) Steel, A.; Carr, S. W.; Anderson, M. W. Chem.
Mater. 1995, 7, 1829-1832.
(b) Lim, M. H.; Stein, A. Chem. Mater. 1999, 11, 3285-
3295.
46. Kim, M. H.; Blanford, C. F.; Stein, A. Chem. Mater.
1998, 10, 467-470.
47. (a) Burkett, S. L.; Sims, S. D.; Mann, S. Chem. Comm.
1996, 1367-1368
(b) Mercier, L.; Pinnavaia, T. J. Chem. Mater. 2000,
12, 188-196.
(c) Kruk, M.; Asefa, T.; Coombs, N.; Jaroniec, M.;
Qzin, G. A. J. Mater. Chem. 2002, 12, 3452-3457.
48. Hall, S. R.; Fowler, C. E.; Lebeau, B.; Mann, S. Chem.
Commun. 1999, 201-202.
49. (a) Mori, Y.; Pinnavaia, T. J. Chem. Mater. 2001, 13,
2173-2178.
(b) Burleigh, M. C.; Markowitz, M. A.; Spector, M. S.;
Gaber, B. P. J. Phys. Chem. B 2001, 105, 9935-9942.
50. Macquarrie, D. J.; Jackson, D. B.; Mdoe, J. E.; Clark,
J. H. New J. Chem. 1999, 23, 539-544.
51. Kruk, M.; Asefa, T.; Jaroniec, M.; Ozin, G. A. J. Am.
Chem. Soc. 2002, 124, 6383-6392.
52. Sayari, A.; Hamoudi, S. Chem. Mater. 2001, 13, 3151-
3168.
53. (a) Kruk, M.; Asefa, T.; Whitnal, W.; Kruk, M.;
Yoshina-Ishii, C.; Jaroniec, M.; Ozin, G. A. J. Am.
Chem. Soc. 2002, 46, 13886-13895.
(b) Sayari, A.; Hamoudi, S.; Yang, Y.; Moudrakovski,
I. L.; Ripmeester, J. R. Chem. Mater.; 2000, 12, 3857-
3863.
(c) Yang, Q.; Li, Y.; Zhang, L.; Yang, J.; Liu, J.;
Li, C. J. Phys. Chem. B. 2004, 108, 7934-7937.
(d) Guan, S.; Inagaki, S.; Ohsuna, T.; Terasaki, O. J.
Am. Chem. Soc. 2000, 122, 5660-5661.
54. Juan A. Melero,* Rafael van Grieken, and Gabriel
Morales. Chem. Rev. 2006, 106, 3790-3812.
55. (a) Van Rhijn, W. M.; De Vos, D. E.; Sels, B. F.;
Bossaert, W. D.; Jacobs, P. A. Chem. Commun. 1998, 317.
(b) Lim, M. H.; Blanford, C. F.; Stein, A. Chem.
Mater. 1998, 10, 467.
(c) Van Rhijn, W. M.; De Vos, D. E.; Bossaert, W. D.;
Bullen, J.; Wouters, B.; Grobet, P.; Jacobs, P. A.
Stud. Surf. Sci. Catal. 1998, 117, 183.
56. Sakamoto, Y.; Kaneda, M.; Terasaki, O.; Zhao, D. Y.;
Kim, J. M.; Stucky, G.; Shin, H. J.; Ryoo, R. Nature
2000, 408, 449-453.
57. (a) Inagaki, S.; Guan, S.; Fukushima, Y.; Ohsuna, T.;
Terasaki, O. J. Am. Chem. Soc. 1999, 121, 9611.
(b) Melde, B. J.; Holland, B. T.; Blandford, C. F.;
Stein, A. Chem. Mater. 1999, 11, 3302.
58. Hamoudi, S. ; Kaliaguine, S. Microporous and
Mesoporous Materirals 59 (2003) 195-204.
59. Mbaraka, I. K. ; Radu, D. R. ; Shanks, B. H. Journal
of Catalysis 219 (2003) 329-336.
60. Lee, J. F. ; Cheng, S. F. Journal of Catalysis 223
(2004) 152-160.
61. Yang, Q. ; Liu, J. ; Yang, J. ; Mahendra, P. K. ;
Shinji I. Journal of Catalysis 228 (2004) 265-272.
62. Shimizu, K. I. ; Eidai, H. ; Tsuyoshi H. ; Tatsuya,
K. ; Tomoya, H. Journal of Catalysis 231 (2005) 131-
138.
63. Liu, J. ; Yang, Q. ; Mahendra P. K. ; Norihiko, S. ;
Shinji, I. ; Yang, J. ; Zhang, L. J. Phys. Chem. B.
2005, 109, 12250-12256.
64. Yang, L. M. ; Wang, Y. J. ; Luo, G. S. ; Dai, Y. Y.
Microporous and Mesoporous Materirals 84 (2005) 275-
282.
65. Kiyotaka, N. ; Ikuyoshi, T. ; Michikazu, H. ;
Shigenobu, H. ; Kazunari, D. ; Junko, N. K. Catalysis
Today 116 (2006) 151-156.
66. Reddy, S. S. ; David R. ; Kumar, V. S. ; Padmasri, A.
H. ; Narayanan, S. ; Rama, K. S. Catalysis
Communications 8 (2007) 261-266.
67. Wang, J. ; Yu, N. ; Zheng, A. ; Yang, J. ; Wu, D. ;
Sun, Y. ; Ye, C.; Deng, F. Micropor. and Mesopor.
Mater. 2006, 89, 219-226.
68. 國家同步輻射中心 (NSRRC), 新竹市, 台灣省
69. Baiker, A. International Chem. Eng., 1985, 17, 25.
70. Brunauer, S.; Deming, L. S.; Deming, W. S.; Teller, E.
J. Am. Chem. Soc., 1940, 62, 1723.
71. 王奕凱, 邱宗明, 李秉傑合譯, 非均勻系催化原理及應用, 國
立編譯館, 渤海堂文化公司, 台北, 1993.
72. Barrett, E. P.; Joyner, L. S.; Halenda, P. P. J. Am.
Chem. Soc., 1951, 73, 373.
73. Gregg, S. J.; Sing, K. S. W.; Adsorption, Surface Area
and Porosity, 2nd Ed., Academic press, New York, NY,
1982.
74. J. H. de Boer, in “ The Structure and Properties of
Porous.
75. G. Ertl, H. KnÖzinger, J. Weitkamp, “ Handbook of
Heterogeneous Catalysis ”, vol 3, VCH D-69451
Weinheim, 1997, 1058.
76. Yang, L. M. ; Wang, Y. J. ; Luo, G. S. ; Dai, Y. Y.
Microporous and Mesoporous Materirals 84 (2005) 275-
282.
77. (a) Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature
1958, 182, 1659.
(b) Andrew, E. R.; Bradbury, A.; Eades, R. G. Nature
1959, 183, 1802.
78. (a) Pines, A.; Gibby, M. G.; Waugh, J. S. J. Chem.
Phys. 1971, 56, 1776.
(b). Pines, A.; Gibby, M. G.; Waugh, J. S. J. Chem.
Phys. 1971, 59, 596.
79. Trebosc, J.; Wiench, J.W.; Huh, S.; Lin, V.S.-Y.;
Pruski, M. J. Am. Chem. Soc. 2005, 127, 1587.
80. Engelhardt, G.; Michel, D. “High-Resolution Solid-
State NMR of Silicates and Zeolites”, John Wiley &
Sons Inc, New York. 1988.
81. Dr. Homi Bhabha Road, Pune 411 008, India Microporous
and Mesoporous Materials 94 (2006) 364–370.
82. Yucang Liang, Reiner Anwander. Microporous and
Mesoporous Materials 72(2004) 153–165.
83. Feng, X.;Fryxell, G. E.;Wang, L. Q.;Kim, A. Y.;
Liu, J.;Kemmer, K. M. Science 1997, 276, 923.
84. Price, N. P.;Stevent, L. Fundamentals of Enzymology
Second Edition (Oxford New York).
85. S. Hamoudi, S. Kaliaguine Microporous and Mesoporous
Materials 59 (2003) 195–204.
86. Das, D.; Lee, J. F.; Cheng, S. Chem.Commun. 2001, 2178-
2179. 87. Jian Liu ; Qihua Yang ; Mahendra P. Kapoor ;
Norihiko Setoyama Shinji Inagaki ; Jie Yang and Lei
Zhang J. Phys. Chem. B 2005, 109, 12250-12256.
88. Yang,L.M. ; Wang,Y.J. ; Luo, F.S. ; Dai ,Y.Y.
Micropor. and Mesopor. Mater. 2005, 84, 275-282.
89. Wang, J. ; Yu, N. ; Zheng, A. ; Yang, J. ; Wu, D. ;
Sun, Y. ; Ye, C.; Deng, F. Micropor. and Mesopor.
Mater. 2006, 89, 219-226.
90. Sadasivan, S. ; Khushalanib, D. ; Mann, S. J. Mater.
Chem. 2003, 13, 1023–1029
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2008-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明