博碩士論文 952204005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.135.183.190
姓名 廖嘉欣(KA-IAN LIO)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 嗜熱菌Geobacillus kaustophilus ATCC8005之蛋白體與熱穩定酵素
(Proteome and thermal stable enzymes from Geobacillus kaustophilus ATCC8005)
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以一株格蘭氏陽性嗜高溫細菌Geobacillus kaustophilus ATCC8005為材料,在最適生長條件(55oC、pH 7),探討對數時期之胞內和胞外所表達之蛋白質,經三種方法(一維或二維電泳分離之膠體內胰蛋白脢消化或不經膠體分離直接在溶液中消化)和電噴霧四極桿飛行時間質譜儀,分析蛋白質胜?序列,以鑑定蛋白質。已完成基因體定序的G. kaustophilus HTA426則提供我們在資料庫比對時,>90%蛋白質身份鑑定之依據。
由胞外蛋白體中,共鑑定49個蛋白質,分別有5個(10%)和11個(22%)為細胞外和膜上的蛋白質,包括數個能夠與胺基酸和寡胜?鏈結合的抗熱性運送蛋白質、兩個與水解胞外核?酸利用有關的蛋白質和一個假設蛋白質(GK2383)。胞內蛋白體一共鑑定出517個蛋白質。這些被鑑定到的胞外與胞內的蛋白質共528個,佔HTA426 ORFs的15%。這些被鑑定到的蛋白質資料將提供我們(1)探討高溫菌在高溫逆境生長的角色上,(2)建立熱穩定蛋白質預測工具的實驗數據,(3)並能應用於搜尋新穎並具有應用性的熱穩定蛋白質上。
把本實驗所鑑定之胞內蛋白體與前人55oC熱處理30分鐘的可溶性胞內次蛋白體比較,發現只有68%的蛋白質在體外仍然保有熱穩定性,並發現與胺基酸運送和代謝相關種類的蛋白質及酵素種類的蛋白質較具有熱穩定性;另外,為了驗證前人篩選熱穩定蛋白質之方法,本研究從前人所鑑定的熱穩定蛋白質中,挑選出不同溫度範圍且具有工業應用潛力的酵素,分別為55~100oC熱穩定之三個抗氧化酵素superoxide dismutase (SOD)、peroxiredosin (PRX)和thioredoxin (TXN);55~85oC和75~85oC熱穩定之兩個未知功能蛋白質,其序列經BLAST分析比對後,發現與Bacillus halodurans之endo-1, 4 beta-glucanase相似,可能具有纖維酵素的活性;55~75?C和55~65oC熱穩定酵素分別選取了cephalosporin acylase與monoacylglycerol lipase (MGLP),將以傳統的生化方法來驗證其熱穩定性。本論文已完成了其中兩個純化的酵素(SOD, MGLP)的熱穩定性測定,SOD的Tm值為94oC,MGLP的最適催化溫度和Tm值分別為65oC和82oC,這些在特定溫度下具有活性與穩定性驗證了,本實驗室所建立篩選熱穩定蛋白質的平台之可用性。另外,與已發表之文獻相比較,G. kaustophilus ATCC8005之SOD的熱穩定性最佳,在94oC加熱30分鐘仍然保有一半的活性,已獲申請中美智慧財產的保護。
摘要(英) In this study, G. kaustophilus ATCC8005, a Gram-positive, aerobic, and thermophilic bacteria, was grown at its optimal growth conditions, 55oC, pH 7. Extracellular proteins from the culture medium (secretome) and whole intracellular proteins in cellular extracts (cytosol proteome) were collected at mid-log phase. By using 1D SDS-PAGE/in-gel digestion, 2D SDS-PAGE/in-gel digestion and in-solution digestion, proteins were identified by ESI-Q-TOF in combination with Mascot search program. The genome sequence from G. kaustophilus HTA426 allows us to accurately identify (>90%) the target proteins in a high-throughput format.
In total, there were 49 proteins identified from secretome. Among them, 5 (10%) and 11 (22%) of them were found to be extracellular and located in membrane part localization, respectively. Among the extracellular proteins, they are thermostable amino acid and oligopeptide binding proteins, nuclease related proteins and one is hypothetical protein. Plus the 517 unique proteins identified from cytosol proteome, there is ~15% ORFs (HTA426) identified in log-phase. These identified proteins will be helpful to explore the growth mechanism of the thermophiles in adverse environment such as high temperature. Futhermore, it can also be used to build a prediction tool base on the experimental data of the heat-stable proteins for searching novel applicable thermostable proteins.
By comparing to a 55oC-treated cell-free extract of Geobacillus kaustophilus ATCC8005, only 68% of proteins is heat stable in vitro. Proteins belong to amino acid transport and metabolism and enzyme category are more thermostable. Furthermore, in order to verify the method for screening the thermostable proteins, we select the enzymes with different temperature range and its importance to the industrial application from those identified proteins. We found three antioxidant enzymes from 55~100oC: superoxide dismutase (SOD), peroxiredosin (PRX) and thioredoxin (TXN). When identify two unknown function proteins from 55~85oC and 75~85 oC, and sequences are compared using BLAST, we found endo-1, 4 beta-glucanase of Bacillus halodurans is similar to the hypothetical proteins we found. But the cellulase activity is still waiting for further research. Under the temperatures of 55~75oC and 55~65oC, two thermostable enzymes, cephalosporin acylase and monoacylglycerol lipase (MGLP), respectively, were identified. We will use traditional biochemical approach to verify these enzymes’ thermostability. In this thesis, we completed the thermostability assay of two thermostable proteins, which are SOD and MGLP. The Tm of SOD is 94oC, and the Topt. and Tm of MGLP is 65oC and 82oC. Thus, we have proved past students’ platform for screening thermostable proteins. In addition, when comparing with the published paper, the SOD found in this experiment has the highest thermostability. After heating for 94oC for 30 minutes, there still has half of the activity, thus we applied the patent to protect our finding.
關鍵字(中) ★ 高溫菌
★ 蛋白體
★ 熱穩定酵素
關鍵字(英) ★ geobacillus kaustophilus
★ thermophile
★ proteome
★ thermal stable enzymes
論文目次 中文摘要…………………...…………………………………………….. I
英文摘要…………………...…………………………………………….. III
誌謝…………………...………………………………………………….. V
目錄……………………...……………………………………………….. VI
圖目錄………………………………………………………………......... IX
表目錄…………………………………………………………………..... XI
附錄目錄……………………………………….………………………… XII
縮寫與全名對照………………………………………………………..... XIII
壹、緒論………………………………………………………………….. 1
1-1 嗜熱微生物…………..…………………………………………… 1
1-2 熱穩定酵素.……………………………………...……………….. 3
1-2-1 熱穩定酵素的來源和特性.……………………………….. 3
1-2-2 熱穩定酵素的應用性……………..….....................……… 4
1-3 Geobacillus 的介紹……………..….....................………………… 5
1-3-1 Geobacillus 的源起……………..………………………….. 5
1-3-2 Geobacillus kaustophilus……….………………………….. 6
1-4 蛋白質體學於Bacillus/Geobacillus 之研究……........................... 7
1-5 研究背景與目的……………………………….…………………. 8
1-5-1 研究背景…………………………………………………... 8
1-5-2 前人的研究成果…………………………………………... 9
1-5-3 本研究之目的……………………………………………... 10
貳、材料與方法………………………………………….………………. 12
2-1 菌株與培養基………...................................................................... 12
2-2 蛋白體製備………………………………….................................. 13
2-3 蛋白質定量………………………………….................................. 14
2-4 蛋白質一維電泳………………….................................................. 14
2-5 蛋白質二維電泳 ………………………………............................ 16
2-6 蛋白質消化…….............................................................................. 19
2-7 蛋白質鑑定………………….......................................................... 20
2-8 基因選殖.......................................................................................... 21
2-9 表現載體之構築.............................................................................. 23
2-10 酵素表現與純化............................................................................ 24
2-11 酵素活性測定................................................................................ 25
2-12 實驗儀器與化學藥品.................................................................... 26
?、結果……………………………………………………….……….…. 30
3-1 G. kaustophilus 之生長..………………………….……………….. 30
3-2 蛋白質體一維電泳分析………………………………………….. 30
3-3 蛋白質體二維電泳……………………………………………….. 31
3-4 蛋白質鑑定……….......................................................................... 33
3-5 蛋白質之功能分類……………………………………………….. 35
3-6基因構築與表達…….…………………………………….……….. 36
3-7重組熱穩定酵素之純化.................................................................... 38
3-8重組熱穩定酵素的活性測定與熱穩定性分析……….….……….. 40
肆、討論………………………………………………………...………… 43
4-1 胞外蛋白體之探討…….…………………………………………. 43
4-2 本研究三種方法探討胞內蛋白體之優缺點比較……………….. 45
4-3 蛋白質體學方法研究基因體已解序的原核生物之比較……….. 45
4-4 探討本研究G. kaustophilus ATCC8005 所鑑定之蛋白質與G.
kaustophilus HTA426 基因註譯之蛋白質...……………………………... 47
4-5 比較胞內蛋白體與55oC 熱處理30 分鐘之胞內次蛋白體……… 48
4-6 本研究熱穩定酵素之活性和熱穩定性探討.................................. 48
伍、結論……….………………………………………………………….. 52
陸、參考文獻…………………………………………………………….. 53
柒、圖…………………………………………………………………….. 58
捌、表…………………………………………………………………….. 85
玖、附錄…………………………………………………………………..103
參考文獻 黃彰彥. (2007)以蛋白質體學篩選嗜高溫細菌Geobacillus kaustophilus之抗熱蛋白質. 國立中央大學生命科學研究所碩士論文.
Antelmann, H., Tjalsma, H., Voigt, B., Ohlmeier, S., Bron, S., van Dijl, J.M. & Hecker, M. (2001) A proteomic view on genome-based signal peptide predictions. Genome Res 11(9), 1484-502.
Antranikian, G., Vorgias, C.E. & Bertoldo, C. (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96, 219-62.
Beauchamp, C. & Fridovich, I. (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1), 276-87.
Blochl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H.W. & Stetter, K.O. (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1(1), 14-21.
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-54.
Chi, M.C., Huang, H.B., Liu, J.S., Wang, W.C., Liang, W.C. & Lin, L.L. (2006) Residues threonine 346 and leucine 352 are critical for the proper function of Bacillus kaustophilus leucine aminopeptidase. FEMS Microbiol Lett 260(2), 156-61.
Chi, M.C., Liu, J.S., Wang, W.C., Lin, L.L. & Huang, H.B. (2008) Site-directed mutagenesis of the conserved Ala348 and Gly350 residues at the putative active site of Bacillus kaustophilus leucine aminopeptidase. Biochimie 90(5), 811-9.
Chong, P.K. & Wright, P.C. (2005) Identification and characterization of the Sulfolobus solfataricus P2 proteome. J Proteome Res 4(5), 1789-98.
Claus, D.B., R. C. W. (1986) Genus Bacillus Cohn 1872. In Bergey's Manual of Systematic Bacteriology 2(1105), 1139.
Das, S., Paul, S., Bag, S.K. & Dutta, C. (2006) Analysis of Nanoarchaeum equitans genome and proteome composition: indications for hyperthermophilic and parasitic adaptation. BMC Genomics 7, 186.
Deckert, G., Warren, P.V., Gaasterland, T., Young, W.G., Lenox, A.L., Graham, D.E., Overbeek, R., Snead, M.A., Keller, M., Aujay, M., Huber, R., Feldman, R.A., Short, J.M., Olsen, G.J. & Swanson, R.V. (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392(6674), 353-8.
Eijsink, V.G., Vriend, G., van den Burg, B., van der Zee, J.R. & Venema, G. (1992) Increasing the thermostability of a neutral protease by replacing positively charged amino acids in the N-terminal turn of alpha-helices. Protein Eng 5(2), 165-70.
Empadinhas, N. & da Costa, M.S. (2006) Diversity and biosynthesis of compatible solutes in hyper/thermophiles. Int Microbiol 9(3), 199-206.
Eymann, C., Dreisbach, A., Albrecht, D., Bernhardt, J., Becher, D., Gentner, S., Tam le, T., Buttner, K., Buurman, G., Scharf, C., Venz, S., Volker, U. & Hecker, M. (2004) A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4(10), 2849-76.
Feng, L., Wang, W., Cheng, J., Ren, Y., Zhao, G., Gao, C., Tang, Y., Liu, X., Han, W., Peng, X., Liu, R. & Wang, L. (2007) Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci U S A 104(13), 5602-7.
Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.R., Ceric, G., Forslund, K., Eddy, S.R., Sonnhammer, E.L. & Bateman, A. (2008) The Pfam protein families database. Nucleic Acids Res 36(Database issue), D281-8.
Fontana, A. (1991) Analysis and modulation of protein stability. Curr Opin Biotechnol 2(4), 551-60.
Francis, A.W., Ruggiero, C.E., Koppisch, A.T., Dong, J., Song, J., Brettin, T. & Iyer, S. (2005) Proteomic analysis of Bacillus anthracis Sterne vegetative cells. Biochim Biophys Acta 1748(2), 191-200.
Giorgianni, F., Desiderio, D.M. & Beranova-Giorgianni, S. (2003) Proteome analysis using isoelectric focusing in immobilized pH gradient gels followed by mass spectrometry. Electrophoresis 24(1-2), 253-9.
Golovacheva, R.S., Loginova, L.G., Salikhov, T.A., Kolesnikov, A.A. & Zaitseva, G.N. (1975) [New species of thermophilic bacilli--Bacillus thermocatenulatus nov. sp]. Mikrobiologiia 44(2), 265-8.
Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R. & Weiss, W. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21(6), 1037-53.
Graham, R.L., Pollock, C.E., Ternan, N.G. & McMullan, G. (2006) Top-down proteomic analysis of the soluble sub-proteome of the obligate thermophile, Geobacillus thermoleovorans T80: insights into its cellular processes. J Proteome Res 5(4), 822-8.
Hakamada, Y., Hatada, Y., Ozawa, T., Ozaki, K., Kobayashi, T. & Ito, S. (2001) Identification of thermostabilizing residues in a Bacillus alkaline cellulase by construction of chimeras from mesophilic and thermostable enzymes and site-directed mutagenesis. FEMS Microbiol Lett 195(1), 67-72.
Hecker, M. & Volker, U. (2004) Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Proteomics 4(12), 3727-50.
Hu, H.Y., Hsu, W.H. & Chien, H.R. (2003) Characterization and phylogenetic analysis of a thermostable N-carbamoyl- l-amino acid amidohydrolase from Bacillus kaustophilus CCRC11223. Arch Microbiol 179(4), 250-7.
Huang, S.L., Wu, L.C., Liang, H.K., Pan, K.T., Horng, J.T. & Ko, M.T. (2004) PGTdb: a database providing growth temperatures of prokaryotes. Bioinformatics 20(2), 276-8.
Huber, R., Eder, W., Heldwein, S., Wanner, G., Huber, H., Rachel, R. & Stetter, K.O. (1998) Thermocrinis ruber gen. nov., sp. nov., A pink-filament-forming hyperthermophilic bacterium isolated from yellowstone national park. Appl Environ Microbiol 64(10), 3576-83.
Hurst, L.D. & Merchant, A.R. (2001) High guanine-cytosine content is not an adaptation to high temperature: a comparative analysis amongst prokaryotes. Proc Biol Sci 268(1466), 493-7.
Imamura, S. & Kitaura, S. (2000) Purification and characterization of a monoacylglycerol lipase from the moderately thermophilic Bacillus sp. H-257. J Biochem 127(3), 419-25.
Jaenicke, R. (1998) What ultrastable globular proteins teach us about protein stabilization. Biochemistry (Mosc) 63(3), 312-21.
Jaffe, J.D., Berg, H.C. & Church, G.M. (2004) Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics 4(1), 59-77.
Jeon, S.J. & Ishikawa, K. (2002) Identification and characterization of thioredoxin and thioredoxin reductase from Aeropyrum pernix K1. Eur J Biochem 269(22), 5423-30.
Kashefi, K. & Lovley, D.R. (2003) Extending the upper temperature limit for life. Science 301(5635), 934.
Li, D.C., Gao, J., Li, Y.L. & Lu, J. (2005a) A thermostable manganese-containing superoxide dismutase from the thermophilic fungus Thermomyces lanuginosus. Extremophiles 9(1), 1-6.
Li, M. & He, S. (2006) Purification and characterization of recombinant human interleukin-29 expressed in Escherichia coli. J Biotechnol 122(3), 334-40.
Li, W.F., Zhou, X.X. & Lu, P. (2005b) Structural features of thermozymes. Biotechnol Adv 23(4), 271-81.
Lin, L.L., Hsu, W.H., Wu, C.P., Chi, M.C., Chou, W.M. & Hu, H.Y. (2004) A thermostable leucine aminopeptidase from Bacillus kaustophilus CCRC 11223. Extremophiles 8(1), 79-87.
Lipton, M.S., Pasa-Tolic, L., Anderson, G.A., Anderson, D.J., Auberry, D.L., Battista, J.R., Daly, M.J., Fredrickson, J., Hixson, K.K., Kostandarithes, H., Masselon, C., Markillie, L.M., Moore, R.J., Romine, M.F., Shen, Y., Stritmatter, E., Tolic, N., Udseth, H.R., Venkateswaran, A., Wong, K.K., Zhao, R. & Smith, R.D. (2002) Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc Natl Acad Sci U S A 99(17), 11049-54.
Lopez, J.L. (2007) Two-dimensional electrophoresis in proteome expression analysis. J Chromatogr B Analyt Technol Biomed Life Sci 849(1-2), 190-202.
Madigan, M.T. & Oren, A. (1999) Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2(3), 265-9.
Manachini, P.L., Mora, D., Nicastro, G., Parini, C., Stackebrandt, E., Pukall, R. & Fortina, M.G. (2000) Bacillus thermodenitrificans sp. nov., nom. rev. Int J Syst Evol Microbiol 50 Pt 3, 1331-7.
Marklund, S. & Marklund, G. (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47(3), 469-74.
McCord JM, F.I. (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 244(22), 6049-55.
McCord, J.M. & Fridovich, I. (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22), 6049-55.
Mongodin, E.F., Hance, I.R., Deboy, R.T., Gill, S.R., Daugherty, S., Huber, R., Fraser, C.M., Stetter, K. & Nelson, K.E. (2005) Gene transfer and genome plasticity in Thermotoga maritima, a model hyperthermophilic species. J Bacteriol 187(14), 4935-44.
Nazina, T.N., Tourova, T.P., Poltaraus, A.B., Novikova, E.V., Grigoryan, A.A., Ivanova, A.E., Lysenko, A.M., Petrunyaka, V.V., Osipov, G.A., Belyaev, S.S. & Ivanov, M.V. (2001) Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. Int J Syst Evol Microbiol 51(Pt 2), 433-46.
Nazina, T.N., Turova, T.P., Poltaraus, A.B., Novikova, E.V., Ivanova, A.E., Grigor'ian, A.A., Lysenko, A.M. & Beliaev, S.S. (2000) [Physiological and phylogenetic diversity of thermophilic spore-forming hydrocarbon-oxidizing bacteria from oil fields]. Mikrobiologiia 69(1), 113-9.
Nelson, K.E., Clayton, R.A., Gill, S.R., Gwinn, M.L., Dodson, R.J., Haft, D.H., Hickey, E.K., Peterson, J.D., Nelson, W.C., Ketchum, K.A., McDonald, L., Utterback, T.R., Malek, J.A., Linher, K.D., Garrett, M.M., Stewart, A.M., Cotton, M.D., Pratt, M.S., Phillips, C.A., Richardson, D., Heidelberg, J., Sutton, G.G., Fleischmann, R.D., Eisen, J.A., White, O., Salzberg, S.L., Smith, H.O., Venter, J.C. & Fraser, C.M. (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399(6734), 323-9.
Oberley, L.W.a.D.R.S. (1984) Assay of superoxide dismutase activity in tumor tissues. Methods in Enzymology 105, 457-464.
Prickett, P.S. (1928) Thermophilic organisms in milk. Jour. Bact. 15.
Priest, F.G., Goodfellow, M. & Todd, C. (1988) A numerical classification of the genus Bacillus. J Gen Microbiol 134(7), 1847-82.
Russell, N.J. (1997) Psychrophilic bacteria--molecular adaptations of membrane lipids. Comp Biochem Physiol A Physiol 118(3), 489-93.
Satyanarayana, T., Noorwez, S.M., Kumar, S., Rao, J.L., Ezhilvannan, M. & Kaur, P. (2004) Development of an ideal starch saccharification process using amylolytic enzymes from thermophiles. Biochem Soc Trans 32(Pt 2), 276-8.
Sinchaikul, S., Sookkheo, B., Phutrakul, S., Pan, F.M. & Chen, S.T. (2001) Optimization of a thermostable lipase from Bacillus stearothermophilus P1: overexpression, purification, and characterization. Protein Expr Purif 22(3), 388-98.
Suzuki, Y., Kishigami, T., Inoue, K., Mizoguchi, Y., Eto, N., Takagi, M. & Abe, S. (1983) Bacillus thermoglucosidasius sp. nov., a new species of obligately thermophilic bacilli. Syst Appl Microbiol 4, 487-495.
Takami, H., Nishi, S., Lu, J., Shimamura, S. & Takaki, Y. (2004a) Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles 8(5), 351-6.
Takami, H., Takaki, Y., Chee, G.J., Nishi, S., Shimamura, S., Suzuki, H., Matsui, S. & Uchiyama, I. (2004b) Thermoadaptation trait revealed by the genome sequence of thermophilic Geobacillus kaustophilus. Nucleic Acids Res 32(21), 6292-303.
Vieille, C., Burdette, D.S. & Zeikus, J.G. (1996) Thermozymes. Biotechnol Annu Rev 2, 1-83.
Vieille, C. & Zeikus, G.J. (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1), 1-43.
Wang, X., Yang, H., Ruan, L., Liu, X., Li, F. & Xu, X. (2008) Cloning and characterization of a thermostable superoxide dismutase from the thermophilic bacterium Rhodothermus sp. XMH10. J Ind Microbiol Biotechnol 35(2), 133-139.
Yu, C.S., Chen, Y.C., Lu, C.H. & Hwang, J.K. (2006) Prediction of protein subcellular localization. Proteins 64(3), 643-51.
Zarilla, K.A.P., J. J. (1987) Bacillus thermoleovorans, sp. nov., a species of obligately thermophilic hydrocarbon utilizing endospore-forming bacteria. Syst Appl Microbiol 9, 258-264.
指導教授 黃雪莉(Shir-Ly, Huang) 審核日期 2008-12-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明