博碩士論文 952204013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.84.139.101
姓名 黃暐捷(Wei Chieh Huang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 FoxO6在肌原母細胞中的代謝及分化中所扮演的角色
(The roles of FoxO6 in myoblast metabolism and differentiaion)
相關論文
★ MyoD對於PGC-1α 基因表現之調控機制★ 雄性素受體對於肌肉前驅細胞決定的功用
★ Nanog和Oct4表現對肌肉分化之影響★ 大量表現幹細胞專有轉錄因子抑制肌肉細胞走向分化
★ FOXOs 轉錄調控因子家族對肌肉細胞末期分化的影響★ 大量表現 Oct4 與 Nanog 抑制肌纖維母細胞 C2C12 分化
★ 在終極肌肉分化時,肌肉性bHLH轉錄因子對PGC-1α的調控★ FoxOs 大量表現對肌肉細胞末期分化的影響
★ 觀察肌肉生成轉錄因子如何調控 M- 和N- cadherin 表現★ Oc4和Nanog共同抑制末端肌肉分化
★ PGC-1α 與 Stra13 間之交互作用★ 探討大量表現 FoxO6 對肌肉終極分化的影響以及尋找 FoxO6 蛋白質在 PGC-1 alpha 啟動子上的結合位
★ 探討丙戊酸 (Valporic acid) 於肌肉細胞中活化 Oct4 promoter 的機制★ 探討小鼠骨骼肌中FoxO6的表現情形
★ 探討FoxO1在肌肉生成細胞中的表現位置變化及抑制肌肉細胞分化的機制★ 建立安全的誘導性幹細胞的重新編寫方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) FoxO轉錄因子已經被指出在細胞中有多樣的功能,包括葡萄糖的代謝、壓力反應、分化、細胞週期、細胞的死亡與生存。在FoxO家族成員中的foxo6主要表達在正在發育階段的腦部及肌肉組織,但是其在骨骼肌中主要的功能目前還不知道。PGC-1α是一個轉錄作用的協同活化子且也是一個重要的代謝調控者。而PGC-1α也會調控粒線體的生成,所以當在骨格肌大量表達PGC-1α會導致粒腺體含量增加。當我們誘導C2C12-mFoxO6肌原母細胞株去經歷終極分化,其肌管的大小及肌管的數量都遠比C2C12-control肌原母細胞株來得小及少。當我們誘導Sol8-mFoxO6肌原母細胞株分化,也可以觀察到並沒有肌管的形成。然而我們觀察到C2C12-mFoxO6細胞週期主要都在G0/G1期。我們開始去分析adheren junction的表現量,在細胞分化階段中,這些adheren junction的基因表現量在C2C12穩定表現FoxOs的細胞株中並沒有太大的不一樣,但是在Sol8-mFoxO6細胞株中它們表現量幾乎都是被調控下降的,我們進一步發現Sol8-mFoxO6及C2C12-mFoxO6的分化情形可以在處理胰島素之後有所回復且在Sol8-mFoxO6中其MyoD、myogenin及M-cadherin的表現量可以被回復增加。我們也發現在緊靠擠滿的C2C12中大量表現FoxO6可以抑制PGC-1α的表現,因此我們認為也許是FoxO6經由結合到PGC-1α啟動子上面導致其活性被抑制。經由Reporter assay證明FoxO6的確可以抑制PGC-1α啟動子的活性。在未來,我們希望可以明確知道PGC-1α與FoxO6之間調控的路徑及其對於肌肉分化調控的路徑為何。
摘要(英) FoxO transcription factors have been implicated in regulating diverse cellular functions including glucose metabolism, stress response, differentiation, cell cycle, cell death and cell survival. One of the members, Foxo6, is majorly expressed in the developing brain and muscle but whose functions in skeletal muscle are largely unknown. PGC-1α is a transcriptional coactivator and important metabolic regulator. It regulates mitochondrial biogenesis and overexpression of PGC-1α results in mitochondrial content increase in skeletal muscle. When C2C12-mFoxO6 myoblast were induced to undergo terminal differentiation, the number and size of myotube formed were significantly smaller than that of C2C12-control cells. No myotube formation was observed when Sol8-mFoxO6 myoblasts were induced to differentiation. However strong cell cycle exit was observed in C2C12-mFoxO6 cells. We set out to analyze the expression of adheren junction. At differentiation stage, the expression levels of these genes are not significantly different among C2C12 stable clones. But they genes were down-regulated in Sol8-mFoxO6. We further found that terminal differentiation of Sol8-mFoxO6 and C2C12-mFoxO6 can be rescued by insulin treatment and expression of myoD, myogenin and M-cadherin can be increased in Sol8-mFoxO6 cells. We also found that overexpression of Foxo6 repress expression of PGC-1α gene in confluent C2C12 myoblast. Thus, we think Foxo6 protein may inhibit PGC-1α promoter activity via direct binding to it. Reporter assays demonstrate that FoxO6 suppresses the PGC-1 promoter activity. In the future, we hope that we can define the regulation network involing PGC-1 and FoxO6 and how myogenesis is regulated by the network.
關鍵字(中) ★ FoxO轉錄因子 關鍵字(英) ★ FoxO transcription factor
論文目次 目錄
中文摘要………………………………………………………………………………i
英文摘要…………………………………………………………………………… ii
誌謝………………………………………………………………………………… iii
目錄……………………………………………………………………………………I
圖目錄……………………………………………………………………………… V
縮寫與全名對照表…………………………………………………………………VII
藥品及材料…………………………………………………………………………VII
第一章、序論…………………………………………………………………………1
1. 肌肉的起源……………………………………………………………………… 1
2. MRF、MEF家族與肌肉細胞生長及分化的關係………………………………2
3. FoxO轉錄因子…………………………………………………………………… 4
4. PGC-1 ( peroxisome proliferative activated receptor, gamma, coactivator 1 ) family ……………………………………………………………………………… 10
5. 研究動機與目的…………………………………………………………………13
第二章、實驗方法與材料……………………………………………………………15
2.1 實驗材料……………………………………………………………………… 15
2.1.1 細胞株…………………………………………………………… 15
2.1.2 細胞培養………………………………………………………… 15
2.1.3 菌株 ………………………………………………………………15
2.1.4 菌株培養 …………………………………………………………15
2.1.5 菌株的保存 ………………………………………………………15
2.2 質體建構……………………………………………………………………… 16
2.2.1 質體建構之基本流程…………………………………………… 16
2.2.2 載體DNA (pGL3 basic) 的製備……………………………… 20
2.2.3 pMSCV-neo-FOXOs 表現載體之構築…………………………20
2.2.4 mPGC-1α promoter 5,端缺失……………………………………21
2.3 穩定細胞株的製備…………………………………………………………… 22
2.3.1 細胞培養…………………………………………………………22
2.3.2 轉染作用 (Transfaction) …………………………………… 22
2.3.3 篩選穩定細胞株…………………………………………………23
2.3.4 建立在 C2C12 及Sol8 所表現的穩定細胞株………………… 23
2.4 RT-PCR…………………………………………………………………………23
2.4.1 Total RNA 的抽取 …………………………………………… 23
2.4.2 反轉錄酶反應 (Reverse Transcriptase, RT) ……………… 23
2.4.3 聚合酶鏈反應 ( Polymerase Chain Reaction, PCR )………24
2.4.4 PCR反應在肌肉特異性基因中的各個條件…………………… 24
2.5 西方墨點實驗 (Western blot) ……………………………………………… 25
2.5.1 總蛋白質的製備…………………………………………………25
2.5.2 SDS-polyacryamide Gel Electropheresis………………………26
2.5.3 轉印 (Transfer) ……………………………………………… 26
2.5.4 Blocking 以及 Antibody 辨識……………………………… 26
2.5.5 抗體脫附 (Striping) ………………………………………… 27
2.6 在不分化的穩定細胞株中處理藥劑的實驗 (insulin、Y27632及A23187 )
……………………………………………………………………………………… 27
2.6.1 細胞培養…………………………………………………………27
2.6.2 藥劑處理…………………………………………………………28
2.6.3 DAPI染色……………………………………………………… 28
2.6.4 將細胞株中的細胞核量化………………………………………28
2.6.5 RT-PCR………………………………………………………… 28
2.7 流式細胞儀分析……………………………………………………………… 28
2.7.1 細胞培養…………………………………………………………28
2.7.2 細胞前置處理……………………………………………………29
2.7.3 流式細胞儀數據分析……………………………………………29
2.8 小鼠肌肉組織RNA的抽取……………………………………………………29
2.9 Imunohistochemistry……………………………………………………… 30
第三章、結果…………………………………………………………………………31
3.1、在肌纖維母細胞 (C2C12、Sol8) 中穩定表達FoxO6會影響細胞在分化型態上的改變…………………………………………………………………………… 31
3.2、Catenin與Cadherin及與肌肉細胞分化相關基因於FoxOs穩定表達細胞株中之表現情形……………………………………………………………………… 31
3.2.1 大量表現FoxOs對C2C12的影響……………………………… 33
3.2.2 大量表現FoxOs對Sol8的影響 …………………………………33
3.3、在處理insulin、Y27632下其對Sol8-mFoxO6不分化的細胞株所造成的影響及觀察肌肉細胞分化的特異性相關基因表現的變化………………………… 34
3.4、在C2C12細胞株中大量表達FoxOs對於細胞週期的影響……………………35
3.4.1 大量表現FoxOs的PMB時期對於細胞週期的影響…………… 35
3.4.2 大量表現FoxOs的CMB時期對於細胞週期的影響…………… 36
3.5、在纖維肌母細胞株中探討肌肉分化特異性基因對mFoxO6 promter的影響
……………………………………………………………………………………… 37
3.6、大量表達FoxOs細胞株中對於PGC-1家族基因表現的影響………………37
3.6.1 大量表達FoxOs的C2C12細胞株對於PGC-1家族基因表現的影響…………………………………………………………………………………… 38
3.6.2 大量表達FoxOs的Sol8細胞株對於PGC-1家族基因表現的影響
……………………………………………………………………………………… 38
3.7、FoxOs轉錄因子在老鼠纖維母細胞 (C3H10T1/2) 對於PGC-1α promoter的影響……………………………………………………………………………… 39
3.8、FoxOs轉錄因子在老鼠纖維肌母細胞 (C2C12) 對於PGC-1α promoter的影響…………………………………………………………………………………… 40
3.9、在老鼠纖維肌母細胞中隨著FoxO6的濃度增加對於PGC-1α promoter (-3229~ +22)的影響……………………………………………………………… 40
3.10、FoxO6轉錄因子對於各段PGC-1α promoter活性的影響……………… 40
3.11、隨著ICR小鼠年紀的增長藉此來觀察foxos在其後腿肌肉組織表現量的變化…………………………………………………………………………………… 41
第四章、討論…………………………………………………………………………43
4.1、在肌纖維母細胞 (C2C12、Sol8) 中穩定表達FoxO6會影響細胞分化型態及肌肉終極分化過程中特異基因的表現量……………………………………… 43
4.2、Insulin及Y-27632對於Sol8-FoxO6細胞株分化上的影響……………… 44
4.3、大量表達FoxOs的C2C12細胞株對於細胞週期的影響……………………46
4.4、在纖維肌母細胞株中探討肌肉分化特異性基因對mFoxO6 promter的影響…………………………………………………………………………………… 47
4.5、FoxOs轉錄因子對於PGC-1α promoter的調控影響………………………47
4.6、隨著ICR小鼠年紀的增長foxos在其後腿肌肉組織表現量的變化………49
4.7、未來將進行的實驗……………………………………………………………49
第五章、參考文獻……………………………………………………………………78
附錄一……………………………………………………………………………… 82
I. 溶液及試劑配方…………………………………………………………………82
II. 藥品試劑……………………………………………………………………… 85
III. 酵素和限制酶…………………………………………………………………85
IV. 抗體…………………………………………………………………………… 85
附錄二……………………………………………………………………………… 86
I. Primer 對照表………………………………………………………………… 86
II. 與肌肉分化相關基因的primer對照表………………………………………89
III. Plasmid 對照表………………………………………………………………90
<表一>……………………………………………………………………………… 92
<表二>……………………………………………………………………………… 93
<表三>……………………………………………………………………………… 94
<表四>……………………………………………………………………………… 95
<表五>……………………………………………………………………………… 96
<表六>……………………………………………………………………………… 97
<表七>……………………………………………………………………………… 98
<表八>……………………………………………………………………………… 99
<表九>………………………………………………………………………………100
<表十>………………………………………………………………………………101
<表十一>……………………………………………………………………………102
圖目錄
圖一、大量表達FoxO6、FoxO6-T26A及FoxO6-S184A在C2C12細胞株中的形態圖………………………………………………………………………………… 50
圖二、大量表達FoxO6在Sol8細胞株中的形態圖………………………………51
圖三、在大量表達FoxOs的C2C12細胞株中其CMB時期對於肌肉分化的特異基因mRNA表現量的影響…………………………………………………………… 52
圖四、在大量表達FoxOs的C2C12細胞株中其MT時期對於肌肉分化的特異基因mRNA表現量的影響……………………………………………………………… 53
圖五、在大量表達FoxOs的Sol8細胞株中其CMB時期對於肌肉分化的特異基因mRNA表現量的影響 …………………………………………………………… 54
圖六、在大量表達FoxOs的Sol8細胞株中其MT時期對於肌肉分化的特異基因mRNA表現量的影響 ……………………………………………………………… 55
圖七、在Sol8-FoxO6-wt細胞株中處理胰島素及Y27632來觀察其對細胞分化形態的影響及肌肉特異基因mRNA的表現量 …………………………………… 58
圖八、在大量表達FoxOs的C2C12細胞株PMB時期利用流式細胞儀來觀察FoxOs對細胞週期的調控影響…………………………………………………………… 59
圖九、在大量表達FoxOs的C2C12細胞株CMB時期利用流式細胞儀來觀察FoxOs對細胞週期的調控影響…………………………………………………… 60
圖十、T-vector-FoxO6 啟動子質體建構………………………………………… 61
圖十一、pGL3 basic-FoxO6啟動子質體建構…………………………………… 62
圖十二、肌肉特異性的轉錄因子對於mFoxO6 啟動子活性的影響…………………………………………………………………………………… 63
圖十三、在大量表達FoxOs的C2C12細胞株中其CMB時期對於PGC-1家族mRNA表現量的影響……………………………………………………………… 64
圖十四、在大量表達FoxOs的C2C12細胞株中其MT時期對於PGC-1家族mRNA表現量的影響……………………………………………………………………… 65
圖十五、在大量表達FoxOs的Sol8細胞株中其CMB時期對於PGC-1家族mRNA表現量的影響……………………………………………………………………… 66
圖十六、在大量表達FoxOs的Sol8細胞株中其MT時期對於PGC-1家族mRNA表現量的影響……………………………………………………………………… 67
圖十七、pGL3 basic-pGC-1α啟動子質體建構 …………………………………68
圖十八、老鼠纖維母細胞在含有生長因子的培養基下其Forkhead轉錄因子對於mPGC-1α啟動子活性的影響 ……………………………………………………69
圖十九、老鼠纖維母細胞在分化培養基下其Forkhead轉錄因子對於mPGC-1α啟動子活性的影響…………………………………………………………………70
圖二十、在C2C12中培養在5% Hose Serum下其Forkhead轉錄因子對於mPGC-1α啟動子轉錄活性的影響……………………………………………… 71
圖二十一、在C2C12中培養在20% Foetal Bovine Serum下其Forkhead轉錄因子對於mPGC-1α啟動子轉錄活性的影響……………………………………… 72
圖二十二、在C2C12中培養在20% Foetal Bovine Serum下當逐量增加FoxO6轉錄因子時會抑制mPGC-1α啟動子的轉錄活性………………………………… 73
圖二十三、FoxO6轉錄因子對於各段mPGC-1α啟動子活性的影響……………74
圖二十四、FoxO6轉錄因子抑制mPGC-1α啟動子 -2310 ~ -768活性 ……… 75
圖二十五、FoxO6轉錄因子抑制mPGC-1α啟動子 -2310 ~ --1902及-1312 ~ -768活性………………………………………………………………………………… 76
圖二十六、foxos於ICR小鼠後腿肌肉組織中隨著年齡的增長其mRNA level的變化………………………………………………………………………………… 77
參考文獻 1. Ordahl CP, Le Douarin NM 1992 Two myogenic lineages within the developing somite. Development 114:339-353
2. Yun K, Wold B 1996 Skeletal muscle determination and differentiation: story of a core regulatory network and its context. Current Opinion in Cell Biology 8:877-889
3. Berkes CA, Tapscott SJ 2005 MyoD and the transcriptional control of myogenesis. Seminars in Cell & Developmental Biology 16:585-595
4. Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S, et a 1991 The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761-766
5. Blackwell TK, Weintraub H 1990 Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250:1104-1110
6. Miner JH, Wold B 1990 Herculin, a Fourth Member of the MyoD Family of Myogenic Regulatory Genes. Proceedings of the National Academy of Sciences 87:1089-1093
7. Weintraub H, Tapscott SJ, Davis RL, Thayer MJ, Adam MA, Lassar AB, Miller AD 1989 Activation of Muscle-Specific Genes in Pigment, Nerve, Fat, Liver, and Fibroblast Cell Lines by Forced Expression of MyoD. Proceedings of the National Academy of Sciences 86:5434-5438
8. Buckingham M 2001 Skeletal muscle formation in vertebrates. Current Opinion in Genetics & Development 11:440-448
9. Naya FJ, Wu C, Richardson JA, Overbeek P, Olson EN 1999 Transcriptional activity of MEF2 during mouse embryogenesis monitored with a MEF2-dependent transgene. Development 126:2045-2052
10. Black BL, Olson EN 1998 TRANSCRIPTIONAL CONTROL OF MUSCLE DEVELOPMENT BY MYOCYTE ENHANCER FACTOR-2 (MEF2) PROTEINS. Annual Review of Cell and Developmental Biology 14:167-196
11. Black BL, Molkentin JD, Olson EN 1998 Multiple Roles for the MyoD Basic Region in Transmission of Transcriptional Activation Signals and Interaction with MEF2. Mol Cell Biol 18:69-77
12. Lehmann OJ, Sowden JC, Carlsson P, Jordan T, Bhattacharya SS 2003 Fox's in development and disease. Trends in Genetics 19:339-344
13. Anderson MJ, Viars CS, Czekay S, Cavenee WK, Arden KC 1998 Cloning and Characterization of Three Human Forkhead Genes That Comprise an FKHR-like Gene Subfamily. Genomics 47:187-199
14. Galili N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ, Emanuel BS, Rovera G, Barr FG 1993 Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5:230-235
15. Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, Aburatani H, Nishino I, Ezaki O 2004 Skeletal muscle FOXO1 (FKHR)-transgenic mice have less skeletal muscle mass, down-regulated type I (slow twitch / red muscle) fiber genes, and impaired glycemic control. J Biol Chem:M400674200
16. Hribal ML, Nakae J, Kitamura T, Shutter JR, Accili D 2003 Regulation of insulin-like growth factor-dependent myoblast differentiation by Foxo forkhead transcription factors. J Cell Biol 162:535-541
17. Skurk C, Izumiya Y, Maatz H, Razeghi P, Shiojima I, Sandri M, Sato K, Zeng L, Schiekofer S, Pimentel D, Lecker S, Taegtmeyer H, Goldberg AL, Walsh K 2005 The FOXO3a Transcription Factor Regulates Cardiac Myocyte Size Downstream of AKT Signaling. J Biol Chem 280:20814-20823
18. Jacobs FMJ, van der Heide LP, Wijchers PJEC, Burbach JPH, Hoekman MFM, Smidt MP 2003 FoxO6, a Novel Member of the FoxO Class of Transcription Factors with Distinct Shuttling Dynamics. J Biol Chem 278:35959-35967
19. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL 2004 Foxo Transcription Factors Induce the Atrophy-Related Ubiquitin Ligase Atrogin-1 and Cause Skeletal Muscle Atrophy. Cell 117:399-412
20. Greer EL, Brunet A FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24:7410-7425
21. Tran H, Brunet A, Griffith EC, Greenberg ME 2003 The Many Forks in FOXO's Road. Sci STKE 2003:re5-
22. Cantley LC 2002 The Phosphoinositide 3-Kinase Pathway. Science 296:1655-1657
23. Biggs WH, III, Meisenhelder J, Hunter T, Cavenee WK, Arden KC 1999 Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proceedings of the National Academy of Sciences 96:7421-7426
24. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME 1999 Akt Promotes Cell Survival by Phosphorylating and Inhibiting a Forkhead Transcription Factor. Cell 96:857-868
25. Nakae J, Park B-C, Accili D 1999 Insulin Stimulates Phosphorylation of the Forkhead Transcription Factor FKHR on Serine 253?hrough a Wortmannin-sensitive Pathway. J Biol Chem 274:15982-15985
26. Rena G, Guo S, Cichy SC, Unterman TG, Cohen P 1999 Phosphorylation of the Transcription Factor Forkhead Family Member FKHR by Protein Kinase B. J Biol Chem 274:17179-17183
27. Tang ED, Nunez G, Barr FG, Guan K-L 1999 Negative Regulation of the Forkhead Transcription Factor FKHR by Akt. J Biol Chem 274:16741-16746
28. Brunet A, Kanai F, Stehn J, Xu J, Sarbassova D, Frangioni JV, Dalal SN, DeCaprio JA, Greenberg ME, Yaffe MB 2002 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol 156:817-828
29. Furuyama T, Kitayama K, Shimoda Y, Ogawa M, Sone K, Yoshida-Araki K, Hisatsune H, Nishikawa S-i, Nakayama K, Nakayama K, Ikeda K, Motoyama N, Mori N 2004 Abnormal Angiogenesis in Foxo1 (Fkhr)-deficient Mice. J Biol Chem 279:34741-34749
30. Castrillon DH, Miao L, Kollipara R, Horner JW, DePinho RA 2003 Suppression of Ovarian Follicle Activation in Mice by the Transcription Factor Foxo3a. Sci Aging Knowl Environ 2003:or12-
31. Andersson U, Scarpulla RC 2001 PGC-1-Related Coactivator, a Novel, Serum-Inducible Coactivator of Nuclear Respiratory Factor 1-Dependent Transcription in Mammalian Cells. Mol Cell Biol 21:3738-3749
32. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM 1999 Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1. Cell 98:115-124
33. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM 2003 An autoregulatory loop controls peroxisome proliferator-activated receptor {gamma} coactivator 1{alpha} expression in muscle. Proceedings of the National Academy of Sciences 100:7111-7116
34. Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM 2001 Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proceedings of the National Academy of Sciences 98:3820-3825
35. Jager S, Handschin C, St.-Pierre J, Spiegelman BM 2007 AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1{alpha}. Proceedings of the National Academy of Sciences 104:12017-12022
36. Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM 2001 Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proceedings of the National Academy of Sciences:061035098
37. Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, Aburatani H, Nishino I, Ezaki O 2004 Skeletal Muscle FOXO1 (FKHR) Transgenic Mice Have Less Skeletal Muscle Mass, Down-regulated Type I (Slow Twitch/Red Muscle) Fiber Genes, and Impaired Glycemic Control. J Biol Chem 279:41114-41123
38. Tadahiro Kitamura, 2 Yukari Ido Kitamura,1 Yasuhiro Funahashi,3 Carrie J. Shawber,3 Diego H. Castrillon,4 Ramya Kollipara,5 Ronald A. DePinho,5 Jan Kitajewski,3 and Domenico Accili1 2007 A Foxo/Notch pathway controls myogenic differentiation and fiber type specification. The Journal of Clinical Investigation:117(119):2477 - 2485
39. Takeichi M 1988 The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development 102:639-655
40. Hermann Aberle HSRK 1996 Cadherin-catenin complex: Protein interactions and their implications for cadherin function. Journal of Cellular Biochemistry 61:514-523
41. Anastasiadis PZ, Reynolds AB 2000 The p120 catenin family: complex roles in adhesion, signaling and cancer. J Cell Sci 113:1319-1334
42. Halevy O, Novitch BG, Spicer DB, Skapek SX, Rhee J, Hannon GJ, Beach D, Lassar AB 1995 Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science 267:1018-1021
43. Tsai W-C, Bhattacharyya N, Han L-Y, Hanover JA, Rechler MM 2003 Insulin Inhibition of Transcription Stimulated by the Forkhead Protein Foxo1 Is Not Solely due to Nuclear Exclusion. Endocrinology 144:5615-5622
44. Kops GJPL, Medema RH, Glassford J, Essers MAG, Dijkers PF, Coffer PJ, Lam EWF, Burgering BMT 2002 Control of Cell Cycle Exit and Entry by Protein Kinase B-Regulated Forkhead Transcription Factors. Mol Cell Biol 22:2025-2036
45. Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJPL, Lam EWF, Burgering BMT, Medema RH 2002 Cell Cycle Inhibition by FoxO Forkhead Transcription Factors Involves Downregulation of Cyclin D. Mol Cell Biol 22:7842-7852
指導教授 陳盛良(Shen Liang Chen) 審核日期 2008-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明