博碩士論文 952204023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.17.186.135
姓名 吳欽鋒(Chin-Feng Wu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 分析水稻T-DNA插入突變株: M0022150, M0023563, M0023580, M0037352及M0032079
(Analysis of T-DNA insertion mutants:M0022150, M0023563, M0023580, M0037352 and M0032079)
相關論文
★ 水稻CAF1基因之功能分析-水稻CAF1基因的選殖、定性及表現★ 水稻OsDEADl-1基因的功能性探討
★ 利用水稻細胞之懸浮培養建立蛋白質高效率分泌系統★ 水稻CCR4基因之功能分析- 水稻CCR4基因的選殖、定性及表現
★ 阿拉伯芥 AtMYBS 基因功能性探討★ 水稻OsMYBS2基因的功能性分析
★ 水稻CCR4基因的功能分析- 繁衍大量表現和靜默表現的基因轉殖水稻★ 水稻OsVALs基因的功能性分析- 水稻OsVALs基因的選殖、定性及表現
★ 以水稻懸浮培養細胞蛋白質生產系統生產mGMCSF★ 建立表現耐熱澱粉普魯南糖酶基因之轉植甘藷
★ 阿拉伯芥AtMYBSs基因參與在糖訊息及離層酸訊息傳遞之研究★ I. II.
★ 探討αAmy3、OsCIN1與Os33KD信號肽在水稻懸浮培養細胞中的功能及特性★ 水稻CAF1基因在水稻懸浮培養細胞之研究
★ 探討阿拉伯芥兩個MYB-related轉錄因子在糖訊息傳遞中所扮演的角色★ 水稻中五個DEAD-box RNA helicase - RH2、RH6、RH22、RH42和RH51基因之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 水稻是重要的糧食作物,並且是可以探討水稻基因對於植物生長及糧食生產的單子葉模式植物。隨著水稻基因體解碼計畫的完成,下一個挑戰便是大規模地探討基因的功能性。功能性基因體突變庫則提供了有效的研究基因功能的工具。在台灣的水稻突變體庫(TRIM)利用T-DNA插入性突變法產生了55,000株包含啟動子捕捉、基因活化、基因插入性缺失的突變體,因此是很好用來研究水稻功能性基因體的來源。在本論文研究裡,我們從突變體庫裡挑選5株在葉片外表型具有褐斑或是白化的突變株進行研究,利用質體救援可以找到T-DNA的插入點,並藉由南方墨點法來偵測T-DNA的插入數目。我們選取的突變株經由實驗結果發現T-DNA皆插在基因與基因間,並且分析突變株的後代子群體插入點及T-DNA插入點鄰近的基因表現量時,卻發現突變株所造成的褐斑或白化性狀,並非是因為T-DNA插入位置所造成的。
在M0032079突變株分析上,發現Os05g36990被T-DNA上的加強子所活化,因而在葉子上有較高的表現量,而此基因為植物專一的ovate domain,並且在水稻莖、桿及穗有專一性表現,但其基因在植物體所扮演的功能卻是未知。因此嘗試以細胞定位及觀察過量表現OsOFP基因轉殖株之性狀,探討OsOFP可能之生理意義。在本論文中利用基因槍將OsOFP與GFP之融合基因轉殖於洋蔥表皮細胞,由GFP螢光位置以得到OsOFP在細胞中之定位,結果發現OsOFP在細胞核與細胞質中均有表現。另一方面,利用農桿菌轉殖法得到過量表現HA-OsOFP之阿拉伯芥T1轉殖株,發現此基因可能在植物生長調控細胞延長上扮演一個抑制角色。 而這樣的結果可以幫助我們瞭解OsOFP在植物訊息傳遞路徑上扮演何種角色。未來更可以利用大量表現HA-OsOFP與基因靜默的轉殖珠相互比較,以幫助我們釐清OsOFP在植物體內的功能。
摘要(英) Rice, as an important crop and a model plant, provides major insights into gene functions for crop growth and production. With the completion of a rice genome sequencing project, the coming challenge is to determine gene functions via large scale analysis. Phenomics with detailed information about tagged populations provides a good tool for functional genomics analysis. Taiwan Rice Insertion Mutants (TRIM) has generated a rice mutant population, containing 55,000 promoter trap and gene activation or knockout lines by a T-DNA insertional mutagenesis approach, and offers a good resource for rice phenomics study. In this study, five T-DNA inserted mutants were selected with leaf-lesion-mimic or albino phenotypes. T-DNA insertion loci of these mutants were identified by plasmid rescue and have two or three T-DNA copy numbers by southern blot assay. We found that T-DNAs were inserted at inter-gene space among these selected rice mutants. Co-segregation analysis of progenies and RNA expression levels of genes near the T-DNA insertion locus were show that the lesion-mimic or albino phenotype of these mutants was not caused by T-DNA inserted loci.
In M0032079, we found that Os05g36990 was highly expressed in its leaves. Os05g36990 encode a plant specific ovate domain and expressed in stems, stalks and panicles. However, its function is unclear. In this study, we tried to find the functions of OsOFP by the tissue or subcellular distribution of GFP-fusion protein expressed in transgenic plants followed by phenotype analysis. Subcellular localization of OsOFP was determined by particle bombardment, our results showed that OsOFP-GFP fusion protein localized at the nucleus and cytoplasm in onion epidermal cells. We established a transgenic T1 plant overexpressing HA-OsOFP by Agrobacterium-mediated transformation. Our results indicated that OsOFP may function as a repressor in regulating cell elongation in plants. These results can help us to understand the possible roles of OsOFP in the signal transduction. The overexpressing HA-OsOFP transgenic T1 plants can compared with RNAi transformants in the future and help us to further identify its function.
關鍵字(中) ★ T-DNA
★ 水稻
關鍵字(英) ★ rice
★ T-DNA
論文目次 中文摘要......................................................................................................................Ⅰ
英文摘要......................................................................................................................Ⅱ
目錄..............................................................................................................................Ⅲ
圖目錄..........................................................................................................................Ⅳ
壹、前言..........................................................................................................................1
貳、前人研究..................................................................................................................3
參、實驗材料與方法....................................................................................................14
肆、結果........................................................................................................................32
伍、討論........................................................................................................................44
陸、未來研究與建議....................................................................................................49
柒、參考文獻................................................................................................................87
附錄..............................................................................................................................94
參考文獻 Aarts, M. G., W. G. Dirkse, W. J. Stiekema and A. Pereira (1993) Transposon tagging of a male sterility gene in Arabidopsis. Nature 363: 715-717
Agrawal, G. K., Yamazaki, M., Kobayashi, M., Hirochika, R., Miyao, A. and Hirochika, H. (2001) Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin expoxidase gene and a novel OsTATC gene. Plant Physiol. 125 : 1248-1257
Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR. (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653-657
An G, Lee S, Kim S-H, Kim S-R (2005) Molecular genetics using T-DNA in rice. Plant and cell physiology 46: 14-22
Arumuganathan, K. and E. E. (1991). Nuclear DNA content of some important plant species. Plant Mol. Biol. Rep. 9: 208-218
Babiychuk E, Fuangthong M, Van Montagu M, Inze D, Kushnir S (1997) Efficient gene tagging in Arabidopsis thaliana using a gene trap approach. Proc Natl Acad Sci 94: 12722-12727
Bennetzen, J. L. (1996) The contributions of retroelements to plant genome organization, function and evolution. Trends Microbiol. 4: 347-353
Chen S, Jin W, Wang M, Zhang F, Zhou J, Jia Q, Wu Y, Liu F, Wu P (2003) Distribution and characterization of over 1000 T-DNA tags in rice genome. Plant J 36: 105-113
Chern, C-G, Fan, M-J, Yu, S-M, Hour A-L, Lu P-C, Lin Y-C, Wei F-J, Huang S-C, Chen S, Lai M-H, Tseng C-S, Yen H-M, Jwo W-S, Wu C-C, Yang T-L, Li, L-S, Kuo Y-C, Li S-M, Li C-P, Wey C-K, Trisiriroj A, Lee H-F, and Hsing, Y-I (2007) A rice phenomics study-Phenotype scoring and seed propagation of a T-DNA insertion-induced rice mutant population. Plant Mol Biol 65: 427-438
Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci 97: 4985-4990
Devos KM (2005) Updating the 'crop circle'. Curr Opin Plant Biol 8: 155-162
Enoki, H., T. Izawa, M. Kawahara, M. Komatsu, S. Koh, J. Kyozuka and K. Shimamoto (1999) Ac as a tool for the functional genomics of rice. Plant J. 19: 605-613
Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis mutational spectrum. The Plant Journal 1: 71-82
Gale, M. D. and K. M. Devos (1998) Comparative gnetics in the grasses. Proc. Natl. Acad. Sci. 95: 1971-1974
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:79-92.
Grandbastien, M. A. (1992) Retroelements in high-plants. Trends Genet. 8: 103-108
Greco, R., P. B. Ouwerkerk, A. J. Taal, C. Favalli, T. Beguiristain, P. Puigdomenech, L. Colombo, J. H. Hoge and A. Pereira (2001) Early and multiple Ac transpositions in rice suitable for efficient insertional mutagenesis. Plant Mol. Biol. 46: 215-227
Greco, R., P. B. F. Ouwerkerk, C. Sallaud, A. Kohli, L. Colombo, P. Puigdomenech, E. Guiderdoni, P. Christou, J. H. C. Hoge and A. Pereira (2001) Transposon insertional mutagenesis in rice. Plant Physiol. 125: 1175-1177
Greco, R., P. B. F. Ouwerkerk, R. J. d. Kam, C. Sallaud, C. Favalli, L. Colombo, E. Guiderdoni, A. H. Meijer, J. H. C. Hoge and A. Pereira (2003) Transpositional behaviour of an Ac/Ds system for reverse genetics in rice.
Theor. Appl. Genet. 108: 10-24
Hackbusch, J., Richter, K., Mu¨ ller, J., Salamini, F. and Uhrig, J.F. (2005) A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc. Natl Acad. Sci. USA. 102: 4908–4912
Hiei, Y., H. S., T. Komari and T. Kumashiro (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6: 271-282
Hiei, Y., Komari, T., and Kubo, T. (1997) Transformation of rice mediated by
Agrobacterium tumefaciens. Plant Mol Biol 35:205-218
Hirochika, H., Fukuchi, A. and Kikuchi, F. (1992) Retrotransposons families in rice. Mol. Gen. Genet. 233 : 209-216
Hirochika H (1997) Retrotransposons of rice: their regulation and use for genome analysis. Plant Mol Biol 35: 231-240
Hirochika, H., Sugimoto, K., Otsuki, Y., Tsugawa, H. and Kanda, M. (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci 93: 7783-7788
Hsing YI, Chern CG, Fan MJ, Lu PC, Chen KT, Lo SF, Sun PK, Ho SL, Lee KW, Wang YC, Huang WL, Ko SS, Chen S, Chen JL, Chung CI, Lin YC, Hour AL, Wang YW, Chang YC, Tsai MW, Lin YS, Chen YC, Yen HM, Li CP, Wey CK, Tseng CS, Lai MH, Huang SC, Chen LJ, Yu SM (2007) A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Mol Biol 63:351–364
Huang S, Cerny RE, Bhat DS, Brown SM (2001) Cloning of an Arabidopsis patatin-like gene, STURDY, by activation T-DNA tagging. Plant Physiol 125: 573-584
Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J, An K, Han MJ, Sung RJ, Choi HS, Yu JH, Choi JH, Cho SY, Cha SS, Kim SI, An G (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22: 561-570
Jeon J, An G (2001) Gene tagging in rice: a high throughput system for functional genomics. Plant Sci 161: 211-219
Jeong DH, An S, Kang HG, Moon S, Han JJ, Park S, Lee HS, An K, An G (2002) T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiol 130: 1636-1644
Jones, D. A., C. M. Thomas, K. E. Hammond-Kosack, P. J. Balint-Kurti and J. D. Jones (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789-793
Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G (2003) Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44: 463-472
Khush GS (1997) Origin, dispersal, cultivation and variation of rice.Plant Mol Biol 35:25-34
Kohli, A., J. Xiong, R. Greco, P. Christou and A. Pereira (2001) Tagged Transcriptome Display (TTD) in indica rice using Ac transposition. Mol. Genet. Genomics 266: 1-11
Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453-466
Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11: 2283-2290
Kunze, R., Saedler, H. and Lonning, W. E. (1997) Plant transposable elements. Adv. Bot. Res. 27: 331-470
Lee S, Jung KH, An G, Chung YY (2004) Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant Mol Biol 54: 755-765
Lee S, Kim J, Han JJ, Han MJ, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38: 754-764
Lemmon M. A., Ferguson K. M., and Abrams C. S.(2002) Pleckstrin homology domains and the cytoskeleton. FEBT Letters 513:71-76
Li J, Lease KA, Tax FE, Walker JC (2001) BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc Natl Acad Sci 98: 5916-5921
Liu,Y.G., Mitsukawa,N., Oosumi,T. and Whittier,R.F. (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J. 8: 457–463
Liu,Y.G. and Whittier,R.F. (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674–681
Liu, J., Van Eck, J., Cong, B. and Tanksley, S.D. (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc. Natl Acad. Sci. USA 99: 13302–13306
Lo, S-F, Yang, S-Y, Chen, K-T, Hsing, Y-I, Zeevaart, JAD, Chan, L-C and Yu, S-M (2008) A novel class of gibberellin 2-oxidasees control semidwarfism, terllering and root development in rice. Plant Cell 20: 2603–2618
Lu, C-A, Lin, C-C, Lee, K-W, Chen, J-L, Ho, S-L, Huang, L-F, Hsing, Y-I, and Yu, S-M (2007) The SnRK1A protein kinase plays a key role in sugar signalling during germination and seedling growth of rice. Plant Cell 19: 2484-2499
Lyznik, L.A., McGee, J.D., Tung, P.Y., Bennetzen, J.L., and Hodges, T.K. (1991)
Homologous recombination between plasmid DNAmolecules in maize
protoplasts. Mol Gen Genet 230:209-218
Mazars GR, Theillet C.(1991)Direct sequencing by thermal asymmetric PCR. Nucl. Acids Res. 19:4783
Maffucci T., and Falasca M. (2001) Specificity in pleckstrin homology (PH) domain membrane targeting: a role for a phosphoinositide-protein co-operative mechanism. FEBS Letters 506: 173-179
Miyao A, Tanaka K, Murata K, Sawaki H, Takeda S, Abe K, Shinozuka Y, Onosato K, Hirochika H (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15: 1771-1780
Michael, T. P. and C. R. McClung (2003) Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis. Plant Physiol. 132: 629-639
Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet JG, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S (2007) Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol 63:847-860
Muthukalianan GK, Lee S, Yum H, Ku S, Kwun M, Kang HG, An G, Chung YY (2003) Identification of anther-specific gene expression from T-DNA tagging rice. Mol Cells 15: 102-107
Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci 96: 15316-15323
Ochman, H., A. S. Gerber, and D. L. Hartl. (1988) Genetic applications of an inverse polymerase chain reaction. Genetics 120: 621–623
Riechmann, J.L., Heard, J., Martin, G. (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105–2110
Rodermel SR, Abbott MS, Bogorad L (1988) Nuclear-organelle interactions: nuclear antisense gene inhibits ribulose bisphosphate carboxylase enzyme levels in transformed tobacco plants. Cell 55: 673-681
SanMiguel, P., Tikhonov, A., Jin, Y. K., Motchoulskaia, N. and Zakharov, D. (1996) Nested retrotransposons in the intergenic regions of the maize genome. Science 274: 765-768
Sasaki T, Matsumoto T, Yamamoto K, Sakata K, Baba T, Katayose Y, Wu J, Niimura Y, Cheng Z, Nagamura Y, Antonio BA, Kanamori H, Hosokawa S, Masukawa M, Arikawa K, Chiden Y, Hayashi M, Okamoto M, Ando T, Aoki H, Arita K, Hamada M, Harada C, Hijishita S, Honda M, Ichikawa Y, Idonuma A, Iijima M, Ikeda M, Ikeno M, Ito S, Ito T, Ito Y, Ito Y, Iwabuchi A, Kamiya K, Karasawa W, Katagiri S, Kikuta A, Kobayashi N, Kono I, Machita K, Maehara T, Mizuno H, Mizubayashi T, Mukai Y, Nagasaki H, Nakashima M, Nakama Y, Nakamichi Y, Nakamura M, Namiki N, Negishi M, Ohta I, Ono N, Saji S, Sakai K, Shibata M, Shimokawa T, Shomura A, Song J, Takazaki Y, Terasawa K, Tsuji K, Waki K, Yamagata H, Yamane H, Yoshiki S, Yoshihara R, Yukawa K, Zhong H, Iwama H, Endo T, Ito H, Hahn JH, Kim HI, Eun MY, Yano M, Jiang J, Gojobori T (2002) The genome sequence and structure of rice chromosome 1. Nature 420:312-316
Sato, Y., Sentoku, N., Miura, Y., Hirochika, H., Kitano, H. and Matsuoka, M. (1999) Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J. 18 : 992-1002
Satoh H, Omura T (1979) Induction of mutation by the treatment of fertilized egg cell with N-methyl-N-nitrosourea in rice. J Fac Agr Kyushu Univ 24:165–174
Scott, A.,Wyatt, S., Tsou, P.L., Robertson, D., and Allen, N.S. (1999) Model
system for plant cell biology: GFP imaging in living onion epidermal cells.
Biotechniques 26:1128-1132
Siebert PD, Chenchik A, Kellogg DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088
Springer, P.S. (2000) Gene traps: tools for plant development and genomics. Plant Cell. 12: 1007-1020
Stangeland, B., Z. Salehian, R. Aalen, A. Mandal and O.-A. Olsen (2003) Isolation of GUS marker lines for genes expressed in Arabidopsis endosperm, embryo and maternal tissues. J. Exp. Bot. 54: 279-290
Starlinger P. (1993) What do we still need to know about transposable element Ac? Gene. 135: 251-255
Takano, M., Kanegae, H., Shinomura, T., Miyao, A., Hirochika, H. and Furuya, M. (2001) Isolation and characterization of rice phytochrome A mutants. Plant Cell 13 : 521-534
Takahashi A, Agrawal GK, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H (2007) Rice Pti1a negatively regulates RAR1-dependent defense responses. Plant Cell 19: 2940-2951
Tan, G., Y. Gao, M. Shi, X. Zhang, S. He, Z. Chen, and C. An. (2005)
SiteFinding-PCR: a simple and efficient PCR method for chromosome walking.
Nucleic Acids Res. 33:e122
Tiwari, S.B., Hagen, G. and Guilfoyle, T. (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15: 533–543
Triglia,T., Peterson,M.G. and Kemp,D.J. (1988) A procedure for in vitro amplification of DNA segments that lie outside the boundaries of known sequences. Nucleic Acids Res. 16: 81-86
Wang S, Chang Y, Guo J, Chen JG (2007) Arabidopsis Ovate Family Protein 1 is a transcriptional repressor that suppresses cell elongation. Plant J 50: 858-872
Whitham, S., S. P. Dinesh-Kumar, D. Choi, R. Hehl, C. Corr and B. Baker (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78: 1101-1115
Wu C, Li X, Yuan W, Chen G, Kilian A, Li J, Xu C, Zhou DX, Wang S, Zhang Q (2003) Development of enhancer trap lines for functional analysis of the rice genome. Plant J 35: 418-427
Wu C, You C, Li C, Long T, Chen G, Byrne ME, Zhang Q (2008) RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. Proc. Natl. Acad. Sci. 105:12915-1220
Xiong, Y. and Eickbush, T. H. (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9: 3353-3362
Yang, Y., Peng, H., Huang, H.,Wu, J., Jia, S., Huang, D. and Lu, T. (2004)
Large-scale production of enhancer trapping lines for rice functional genomics.
Plant Science 167:281-288
Yin, Y., Vafeados, D., Tao, Y., Yoshida, S., Asami, T. and Chory, J. (2005) A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120: 249–259
Yuanxin Y, Chengcai A, Li L, Jiayu G, Guihong T, Zhangliang C.(2003) T-linker-specific ligation PCR (T-linker PCR): an advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Res. 31:e68
Yu, S-M, Ko, S-S, Hong, C-Y, Sun, H-J, Hsing, Y-I and Ho, T-HD (2007) Global functional analyses of rice promoters by genomics approaches. Plant Mol Biol 65: 417-425
Zhao L, Nakazawa M, Takase T, Manabe K, Kobayashi M, Seki M, Shinozaki K, Matsui M (2004) Overexpression of LSH1, a member of an uncharacterised gene family, causes enhanced light regulation of seedling development. Plant J 37: 694-706
Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30: 349-359
指導教授 陸重安、余淑美
(Chung-an Lu、Su-may Yu)
審核日期 2009-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明