博碩士論文 952205009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:52.205.167.104
姓名 黃元貞(Yuan-Chen Huang)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 重點重覆抽樣下拔靴法估計風險值-以台泥華碩股票為例
相關論文
★ SABR模型下使用遠期及選擇權資料的參數估計★ 台灣指數上的股價報酬預測性
★ 台灣股票在alpha-TEV frontier上的投資組合探討與推廣★ On Jump Risk of Liquidation in Limit Order Book
★ 結構型商品之創新、評價與分析★ 具有厚尾殘差下 有效地可預測性檢定
★ A Dynamic Rebalancing Strategy for Portfolio Allocation★ A Multivariate Markov Switching Model for Portfolio Optimization
★ 漸進最佳變點偵測在金融科技網路安全之分析★ Reducing forecasting error under hidden markov model by recurrent neural networks
★ Empirical Evidences for Correlated Defaults★ 金融市場結構轉換次數的偵測
★ 在DVEC-GARCH模型下風險值的計算與實證研究★ 資產不對稱性波動參數的誤差估計與探討
★ 公司營運狀況與員工股票選擇權之關係★ 結合買權改進IGARCH模型之參數估計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近幾年來,在金融界一個重要的議題是風險管理,其中風險值(VaR)
是用以度量且管理市場風險的參考。本文目的在於計算投資組合之風險值,以及風險值之尾端估計機率,再與原始設定之尾端機率作比較。而蒙地卡羅分析到目前為此是最有用的方法之一,其最大的缺點是計算時間較長。在本文中,我們假設風險因子為一個多維常態分配,利用重點抽樣方法,增加尾端機率樣本被抽樣的機率,配合拔靴法,即重點抽樣下的拔靴法估計投資組合之風險值,以及估計風險值之尾端機率。最後使用本文所建議的方法,對台灣兩個股票之投資組合,台泥與華碩,做一個實證的分析。
摘要(英) Nowadays, risk management is an important issue. A standard benchmark used to measure and to manage market risks is the Value-at-Risk (VaR).To evaluate a portfolio value-at-risk (VaR), Monte Carlo analysis is by far the most powerful method. However, the biggest drawback of this method is its computational time. In this paper, we model the return of risk factors with a multivariate normal and provide an efficient method, a bootstrap algorithm with importance resampling, to estimate portfolio loss probability and portfolio value-at-risk. As an illustration of our proposed methods, we report an empirical study based on two stock index returns in
Taiwan, the Taiwan cement corporation and the ASUS.
關鍵字(中) ★ 重點重覆抽樣
★ 拔靴法
★ 風險值
關鍵字(英) ★ VaR
★ bootstrap
★ importance resampling
論文目次 第一章 緒論........................................... 1
第一節 研究背景與動機................................. 1
第二節 文獻回顧....................................... 2
第三節 風險值與投資組合............................... 3
第二章 重點重覆抽樣與拔靴演算法....................... 9
第一節 拔靴法(Bootstrap).............................. 9
第二節 重點重覆抽樣拔靴法............................. 13
第三節 一維常態重點重覆抽樣........................... 14
第四節 多維常態重點重覆抽樣拔靴法......................16
第五節 多維常態重點重覆抽樣拔靴演算法................. 19
第三章 實證分析....................................... 21
第一節 資料來源....................................... 21
第二節 資料分析....................................... 21
第三節 相對效率分析................................... 27
第四節 回溯測試....................................... 29
第四章 結論.......................................... 32
參考文獻. ..............................................33
附錄:................................................ 37
參考文獻 [1] Beder, Tanya Styblo (1995). VAR:Seductive but Dangerous. Financial Analysis Journal, September-October.
[2] Durrett, R. (1996). Probability: Theory and examples (2nd ed.). Duxbury Press.
[3] Duffie, D., & Pan, J. (1997). An overview of value-at-risk. The Journal of Derivatives, 7, 7–49.
[4] Efron, B., & Tibshirani, R. J. (1993). An introduction to the bootstrap. New York: Chapman & Hall.
[5] Fuh,C.D & Yang,Y.L(2007). A Bootstrap Method to Calculate Value-at-Risk in Emerging Markets Under Stochastic Volatility Models.Journal of the Chinese Statistical Association Vol. 45, 106–129
[6] Fuh, C. D., & Hu, I. (2004). Efficient importance sampling for events of moderate deviations with applications. Biometrika, 91, 471–490.
[7] Glasserman, P., Heidelberger, P., & Shahabuddin, P. (1999a). Asymptotically optimal importance sampling and stratification for pricing path-dependent options. Mathematical Finance, 9, 117–152.
[8] Glasserman, P., Heidelberger, P., & Shahabuddin, P. (1999b). Importance sampling in the Heath–Jarrow–Morton framework. Journal of Derivatives, 7, 32–50.
[9] Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2000). Variance reduction techniques for estimating Value-at-Risk. Management Science, 46, 1349-1364.
[10] Glasserman, P., Heidelberger, P., and Shahabuddin, P. (2002). Portfolio Value-at-Risk with heavy tailed risk factors. Mathematical Finance,12, 239-270.
[11] Glasserman, P. (2003). Monte Carlo methods in financial engineering. New York: Springer-Verlag.
[12] Hall, P. (1990a). Asymptotic properties of the bootstrap for heavy-tail distributions. Annals of Probability,18, 1342–1360.
[13] Hall, P. (1990b). Performance of balanced bootstrap resampling in distribution function and quantile problems. Probability. Theory Related Fields, 85, 239–260.
[14] Hall, P. (1991). Bahadur representations for uniform resampling and importance resampling with applications to asymptotic relative efficiency. Annals of Statistics, 19, 1062–1072.
[15] Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer-Verlag, New York.
[16] Hull, J., & White, A(1998).Incorporating Volatility Updating Into the Historical Simulation Method for Value at Risk. Journal of Risk, 6, 9-19, spring.
[17] Lin, S. K., Fuh, C. D., & Ko, T. J. (2004). A bootstrap method with importance resampling to evaluate value-at-risk. Journal of Financial Studies, 12(1), 81–117.
[18] Lin,S.K , Wang,R.H & Fuh,C.D. (2007).Risk Management for Linear and Non-Linear Assets: A Bootstrap Method with Importance Resampling to Evaluate Value-at-Risk. Springer Science+Business Media, LLC
指導教授 傅承德(Cheng-der Fuh) 審核日期 2008-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明