博碩士論文 952206020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.136.97.64
姓名 杜承恩(Cheng-en Du)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以體積全像布拉格光柵為反射鏡之外腔式半導體雷射研究
(External Cavity Diode Laser Using Volume Bragg Grating as Laser Mirror)
相關論文
★ 以體積全像布拉格光柵為反射鏡之單縱模波長可調式V型共振腔鈦藍寶石固態雷射研究★ 已體積布拉格光柵為可調反射率輸出雷射鏡研究
★ 以錐形半導體放大器為增益介質、外腔VBG回饋半導體雷射研究★ 利用楔形稜鏡與繞射光柵設計非光線追跡薄型太陽能集光器
★ 以體積布拉格光柵為共振腔反射鏡之有效腔長研究★ 穩態紅外線LED封裝熱阻量測
★ 以體積布拉格光柵作為雷射共振腔內反射鏡之縱向模態研究★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
★ 以體積布拉格光柵作為雷射共振腔反射鏡之橫模行為研究★ 鎖相熱影像檢測法用以檢測材料內部缺陷
★ 光聲影像顯微術之研究★ 光激發額外載子於太陽能電池內空間分佈之二維軸對稱與二維線對稱物理參數模擬
★ 基於純量繞射理論以遠場聲場重建光聲影像之研究★ 基於光聲訊號之三維資訊重建
★ 以動態模型分析PQ:PMMA作為體積布拉格光柵之繞射效率研究★ 紅外線穩態熱阻量測法之石墨層影響之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文先介紹目前氬離子雷射(波長為488 nm)的應用,並引入利用半導體雷射搭配頻晶體可將波長轉換至可見光波段來取代氬離子雷射的構想,然而一般的近紅外光半導體雷射為了追求高輸出功率使得其雷射的光學品質極差(多縱模,且具有高階橫向模態),搭配倍頻晶體後其轉換效率極差,若要提高其轉換效率,則雷射需具有好的光學品質(單縱模,M2~1)。
為了改善半導體雷射的光學品質,本論文使用一個新的光學元件---體積全像布拉格光柵(Volume Bragg Grating, VBG),利用其同時具有波長選擇及橫向模態選擇的特性作為半導體雷射的輸出耦合鏡,來改善半導體雷射的光學品質。
本實驗以976 nm的邊射型半導體雷射做為雷射增益介質設計出三個外腔式共振腔形式:線型外腔式共振腔以體積全像布拉格光柵(VBG)作為其輸出耦合鏡;V型外腔式共振腔,以1083 nm VBG同時作為波長選擇及橫向模態選擇器,並以976 nm VBG作為輸出耦合鏡;V型雙VBG外腔式共振腔,以976 nm VBG作為波長選擇器,1083 nm VBG作為橫向模態選擇器,並以平面鏡做為輸出耦合鏡。
使用不同的光學儀器量測各結構下雷射的特性,藉由光譜儀及Fabry-Perot干涉儀測得雷射輸出波長為976.64 nm,FWHM約為28 pm,並且其量測到的M-square 快軸方向從5.38改善至1.24,慢軸方向可從14.81改善至3.09。
摘要(英) This thesis describes argon ion laser (wavelength is 488 nm) applications, and the introduction of the use of diode laser with a nonlinear crystal can convert emission wavelength to visible light to replace the concept of argon ion laser. The general near-infrared diode laser can have high power but the optical quality is very poor (multi-longitudinal modes and multi-transverse modes). Conversion efficiency is lower when laser coupled into nonlinear crystal. In order to improve its conversion efficiency, diode laser should have a good optical quality (single longitudinal mode, M2 ~ 1). This thesis uses a new optical component -- volume holographic Bragg grating (VBG).
In this thesis used the 976 nm edge-emitting diode laser as the laser gain medium and VBG is wavelength selector and transverse mode filter at the same time. The design of the three external cavity types: linear external cavity which VBG as the output coupler; V-shaped external cavity which used 1083 nm VBG at the same time as the wavelength selector and transverse mode selector, and 976 nm VBG as an output coupler; V-shaped dual external cavity which used 976 nm VBG as a wavelength selector, 1083 nm VBG at the same time as the wavelength selector and transverse mode selector and the plane mirror as the output coupler.
The experiment result is got output power which is 31.4 mW, wavelength can be locked at 976.64 nm, FWHM about 28 pm, M-square for fast axis is 1.24, and M-square for slow axis is 3.09.
關鍵字(中) ★ 半導體雷射
★ 外腔式雷射
★ 體積全像布拉格光柵
關鍵字(英) ★ External cavity laser
★ Diode laser
★ Volume Bragg Grating
論文目次 摘要................................................................................................................I
Abstract ........................................................................................................ II
致謝.............................................................................................................IV
目錄..............................................................................................................V
圖目錄........................................................................................................VII
第一章 緒論................................................................................................. 1
1.1 實驗動機............................................................................................................1
1.2 半導體雷射簡介................................................................................................5
1.3 單縱模半導體雷射............................................................................................8
1.3.1 分佈反饋半導體雷射(DFB Laser) ......................................................8
1.3.2 分佈布拉格反射鏡半導體雷射(DBR Laser)....................................10
1.3.3 垂直共振腔面射型半導體雷射(VCSEL) .........................................12
1.4 單橫模半導體雷射..........................................................................................15
第二章實驗原理....................................................................................... 19
2.1 半導體雷射特性..............................................................................................19
2.1.1 半導體雷射輸出功率特性.................................................................20
2.1.2 半導體雷射輸出橫向模態(空間模態)特性......................................22
2.1.3 半導體雷射輸出縱向模態特性.........................................................26
2.2 體積全像布拉格光柵工作原理......................................................................30
2.2.1 體積全像布拉格光柵架構.................................................................30
2.2.2 體積全像布拉格光柵原理.................................................................33
2.3 法布里-珀羅干涉儀工作原理......................................................................42
2.4 量測雷射橫向模態M-square 的工作原理....................................................48
第三章實驗架構....................................................................................... 52
3.1 線型外腔式共振腔........................................................................................52
3.2 V 型外腔式共振腔........................................................................................54
3.3 V 型雙VBG 外腔式共振腔.........................................................................56
第四章數據分析....................................................................................... 58
4.1 半導體雷射特性..............................................................................................58
4.1.1 固定溫度情況下.................................................................................58
4.1.2 固定輸入電流情況下.........................................................................60
4.1.3 半導體雷射的縱模.............................................................................61
4.2 不同共振腔架構之比較..................................................................................63
4.2.1 線型外腔式共振腔.............................................................................63
4.2.2 V 型外腔式共振腔.............................................................................70
4.2.3 V 型雙VBG 外腔式共振腔..............................................................74
4.3 VBG 角度選擇性與雷射橫向模態之分析..................................................79
第五章結論與未來展望........................................................................... 83
5.1 結論..................................................................................................................83
5.2 未來展望..........................................................................................................84
Reference..................................................................................................... 85
參考文獻 Reference
[1] http://en.wikipedia.org/wiki/Confocal_microscopy
[2] A. V. Shchegrov et al., “488nm coherent emission by intracavity
frequency doubling of extended cavity surface-emitting diode lasers”
Proc. SPIE, vol. 4994, p. 197 (2003)
[3] http://www.lumics.com/fileadmin/user_upload/pdf_Umount/LU09x
xU120.pdf
[4] 余兆陞,”以鎂掺雜鈮酸鋰製作二倍頻藍光雷射波導元件之製
程研究”中央大學碩士論文,DOP(2007)
[5] L.Glebov, Invited Paper: “Volume Bragg Gratings in PTR Glass
--New Optical Elements for Laser Design”, 23rd Advanced
Solid-State Photonics (ASSP) Topical Meeting. ASSP Technical
Digest, Paper Code MD1, Nara, Japan, January 2008
[6] Numai, Takahiro. “Fundamentals of Semiconductor Lasers”
,CH.5 P.85(2004)
[7] Schubert, E. Fred. “Light-emitting Diodes”,CH.4 P.67(2003)
[8] Ye, Cunyun.; Wei, Tjan Kwang. “Tunable External Cavity Diode
Laser”, CH.3 P.31(2004)
[9] Numai, Takahiro. “Fundamentals of Semiconductor Lasers”
,CH.6 P174(2004)
[10] Y. Nakano, Y. Luo, and K. Tada: “Facet reflection independent,
single longitudinal mode oscillation in a GaAlAs/GaAs distributed
feedback laser equipped with a gain-coupling mechanism,” Appl.
Phys. Lett. 55, 1606 (1989)
[11] Ghafouri-Shiraz, H. “Distributed Feedback Laser Diodes and
Optical Tunable Filters”,CH.2 P58(2003)
[12] Amnon Yariv, Pochi Yeh “photoncis Optical Electronics in Modern Communications” sixth edition
[13] http://vcsel-www.pi.titech.ac.jp/news/coeadpro.html
[14] http://ceolaser.ru/silver-bullet-laser-diode-array-submodules.html
[15] http://lumicslaser.com/fileadmin/user_upload/pdf_single_mode/
LU0980M430.pdf
[16] S.O’Brien, R. Lang, R. Parke, J. Major, D. F. Welch, and D. Mehuys,
“2.2-W continuous-wave , diffraction-limited monolithically
Integrated master oscillator power amplifier at 854 nm,” IEEE
Photon. Technol. Lett., vol. 9, pp. 440–442, Apr. 1997.
[17] http://gorgia.no-ip.com/phd/html/thesis/phd_html/node4.html
[18] Numai, Takahiro. “Fundamentals of Semiconductor Lasers”
,CH.5 P.85(2004)
[19] Schubert, E. Fred. “Light-emitting Diodes”,CH.4 P.67(2003)
[20] Numai, Takahiro. “Fundamentals of Semiconductor Lasers”
[21] Walter Koechner, Michael Bass “Solid-State Lasers”
[22] D. Gabor, “A new Microscopic principle,” Nature 161, 777-778 (1948).
[23] http://en.wikipedia.org/wiki/Fiber_Bragg_grating
[24] Stephane Santran, Miguel Martinez-Rosas “Nonlinear refractive
index of photo-thermo-refractive glass”, Optical Materials 28 (2006) 401–407
[25] Yariv Yeh. “Optical wave in crystals”,CH.6
[26] H. Kogelnik, “Coupled wave theory for thick hologram grating,”
Bell Sys.Technol. J. 48, 2909-2947 (1969).
[27] Numai, Takahiro. “Fundamentals of Semiconductor Lasers”
[28] http://en.wikipedia.org/wiki/Fabry-Perot_Interferometer
[29] http://en.wikipedia.org/wiki/Transverse_mode
[30] http://www.lumics.com/fileadmin/user_upload/Datasheets_Lumics
_Products/Multimode/Umount/LU09xxU120.pdf
指導教授 鍾德元(Te-Yuan Chung) 審核日期 2009-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明