博碩士論文 952206039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.227.240.143
姓名 歐建甫(Chien-fu Ou)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 使用液晶空間光線調制器之相移式光柵-十字狹縫量測裝置
(Phase Shifting Grating-Cross Slit Test Device Utilizing Liquid Crystal Spatial Light Modulator)
相關論文
★ 中小型光學鏡組之高密度全場波前量測★ 全像場同時取像像差量測
★ 單頻位移與傾角量測干涉儀★ 廣角物鏡之相對照度探討及其設計應用
★ 新型零後焦長太陽能集光器的設計★ 相移式干涉儀之系統校正及量測軟體的撰寫
★ 非球面干涉儀之離軸對心校正★ 高數值孔徑顯微物鏡設計
★ Double Zernike Polynomial 校準光學系統★ 薄型化光展量疊加太陽能集光器
★ A Similarity-Guided Spots Sorting Method to Increase the Dynamic Range of a Shack Hartmann Sensor★ 雷射微型投影機波前量測技術
★ 旋轉掃描式非球面干涉儀之演算法開發及應用★ 校準低敏型Shack-Hartmann波前感測器
★ 利用Slanted-edge方法以及相位回復演算法量測光學系統的成像像差★ 非準直系統下Shack-Hartmann波前檢測器的校正補償
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 製作光學元件的過程當中,不管使用何種製造方法,必定需要量測經過加工後成品或半成品的元件之表面形狀。光學元件表面輪廓的檢驗及量測的方法,最常使用的光學方法,大致上可分類為雙波前的干涉方法以及在焦平面位置上橫向像差的量測方法,前者屬於波動光學領域的應用,後者則是屬於幾何光學領域的範疇。
本論文為屬於幾何光學的檢測方法,藉由梁博士最新發明的光柵-狹縫法,量取橫向像差。本實驗使用非同調光源照射液晶調制器,利用液晶調制器控制物體的亮暗程度,來達到光柵的功能,且配合十字形狀狹縫的調制,使得出瞳面上產生朗奇條紋,接著利用四步相移法,將橫向像差以數學方法計算出來,並重建波前,最後取得光學元件的表面的輪廓。
我們已經使用光柵十字狹縫法獲得待測鏡的波前及表面起伏輪廓,並經由和干涉儀量取結果做比較,發現兩者表面起伏擁有極相似的結果,驗證本實驗架構的可行性。
摘要(英) At a process of making the optics, no matter what manufacturing method we’ve chosen, we have to measure the surface profile of semi-finished goods or finished items. The most usual test method and measurement of optical element surface profile of optics roughly can be classified into two ways: the interferometry of two wavefronts; and the measurement of transverse ray aberration on the focal plane. The former belongs to the application of wave optics, and the latter belongs to the geometry optics.
Our dissertation belongs to the testing method of geometry optics. This experiment is by means of the grating-slit test invented by Dr. Liang to measure the transverse ray aberration. The experiment used incoherent light source to irradiate the liquid crystal modulator. And we used liquid crystal modulator to control the brightness of object and reached the function of grating. By using the cross-slit, we can get the Ronchigram on exit pupil plane. Then through four steps of phase-shifting method, we can mathematically calculate the amount of transverse ray aberration. Finally, we reconstruct the wavefront and get the information of surface profile of optics.
We already obtained the wavefront result of mirror’s surface profile by grating-cross slit method. Comparing it with the result measured by interferometry, we found the two surface profiles were very similar. By doing so, we can verify the feasibility of our experiment setup.
關鍵字(中) ★ 十字狹縫
★ 光柵
★ 液晶
★ 光學量測
★ 表面量測
關鍵字(英) ★ cross slit
★ liquid crystal
★ optical testing
★ surface profile measurement
★ grating
論文目次 摘 要 I
ABSTRACT II
誌 謝 III
目 錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒 論 1
1-1 研究動機 1
1-2 歷史回顧 3
1-3 內容概要 4
第二章 基本理論 6
2-1 像差的介紹 6
2-2 波前像差與橫向光線像差關係 7
2-3 朗奇量測法 9
2-4 光柵-狹縫量測法 11
2-5 朗奇法及光柵-狹縫法比較 14
2-6 相位移量化方法 15
2-6-1 利用相移法的朗奇量測法 15
2-6-2 利用相移法的光柵-狹縫量測法 17
2-7 利用十字形狹縫的量測方法 18
第三章 表面輪廓量測技術 22
3-1 刀口法 22
3-2 朗奇量測法 26
3-3 Shack Hartmann法 29
3-4 相位調制量測法 31
第四章 實驗系統架構 34
4-1 光源部份 35
4-2 照明系統 39
4-2-1 雙鏡片蠅眼式積分器及偏振轉換器40
4-2-2 光均勻導管 43
4-3 光路設計 44
4-4 分光元件設計與選擇 45
4-4-1 X-Shaped Cube 46
4-4-2 Pellicle beamsplitter 50
4-5 顯示單元及調制單元 52
4-6 待測表面 54
4-7 成像系統 55
第五章 光學表面形狀量測實驗 58
5-1 實驗硬體裝置 58
5-2 實驗軟體部分 60
5-3 光學表面量測步驟 62
5-3-1 Alignment位置校準 63
5-3-2影像擷取及四步相移法 65
5-3-3 取像及2π相位展開 67
5-4 量測結果比較 69
5-5 實驗誤差來源分析 74
第六章 結 論 75
6-1 實驗總結 75
6-2 未來展望 76
參考文獻 78
參考文獻 [1]V. Ronchi, "Forty years of history of a grating interferometer," Appl. Opt. 3, 437 (1964).
[2]B. J. Thompson, Studies in Optics, Technical Report, U.S. AFAL-TR-73-112, U.S. Government, Washington, D.C., (1973).
[3]T. Yatagai, "Fringe scanning Ronchi test for aspherical surfaces," Appl. Opt. 23, 3676 (1984).
[4]K. Omura, and T. Yatagai, "Phase measuring Ronchi test," Appl. Opt. 27, 523-528 (1988).
[5]K. Hibino, D. I. Farrant, B. K. Ward, and B. F. Oreb, "Dynamic range of Ronchi test with a phase-shifted sinusoidal grating," Appl. Opt. 36, 6178-6189 (1997).
[6]M. Mora-Gonzalez, and N. A. Ochoa, "Sinusoidal liquid crystal display grating in the Ronchi test," Optical Engineering 42, 1725-1729 (2003).
[7]C.-W. Liang, and J. Sasian, "Geometrical optics modeling of the grating-slit test," Opt. Express 15, 1738-1744 (2007).
[8]J. L. Rayces, "Exact Relation between Wave Aberration and Ray Aberration," Journal of Modern Optics 11, 85-88 (1964).
[9]D. Malacara, Optical Shop Testing (Wiley-Interscience, 1992).
[10]F. Zamkotsian, K. Dohlen, P. Lanzoni, S. P. Mazzanti, M.-L. Michel, V. Buat, and D. Burgarella, "Knife-edge test for characterization of subnanometer deformations in micro-optical surfaces," in Optical Manufacturing and Testing III(SPIE, Denver, CO, USA, 1999), pp. 328-336.
[11]A. Ho, and K. Ehrmann, "Knife-edge system for evaluating contact lenses," in Ophthalmic Technologies X(SPIE, San Jose, CA, USA, 2000), pp. 102-107.
[12]J. Zhang, R.-z. Zhang, B.-w. Cai, and P. Liu, "Research on technology of digital knife-edge test," in 2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment(SPIE, 2006), pp. 61500M-61505.
[13]H. B. Cheng, Y. Yam, and H. Tong, "A Quantitative Knife-edge Testing Method for Local Deformation Evaluation in Optical Aspheric Fabrication," in Automation Science and Engineering, 2007. CASE 2007. IEEE International Conference on, Y. Yam, ed. (2007), pp. 818-822.
[14]H. Jing, B. Fan, S. Wu, F. Wu, and T. Fan, "Measurement of optical surfaces with knife edge method," in 3rd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment(SPIE, 2007), pp. 67235L-67235.
[15]J. Manuel, Alberto, S. Vergara-Limon, and J. Cuautle-Cortes, "Improved Ronchi Tester," Appl. Opt. 40, 501-505 (2001).
[16]A. Cordero-Davila, J. Diaz-Anzures, and V. Cabrera-Pelaez, "Algorithm for the Simulation of Ronchigrams of Arbitrary Optical Systems and Ronchi Grids in Generalized Coordinates," Appl. Opt. 41, 3866-3873 (2002).
[17]N. A. Ochoa, M. Mora-Gonzalez, and F. Santoyo, "Flatness measurement by a grazing Ronchi test," Opt. Express 11, 2177-2182 (2003).
[18]J. Salinas, E. Luna-Aguilar, L. Salas, A. Cornejo, I. C. Torres, and V. M. Garcia, "Classical Ronchi test for piston detection," in Large Ground-based Telescopes(SPIE, Waikoloa, HI, USA, 2003), pp. 758-763.
[19]Q. Xi, L. Chen, R. Zhu, Y. Li, and X. Bai, "Fast Ronchi test base on a liquid crystal display," in Optical Design and Testing II(SPIE, Beijing, China, 2005), pp. 682-687.
[20]B. Wang, H. Chen, X. Luo, C. Yu, and Z. Liu, "Surface measurement based on chessboard-shaped 2-D Ronchi grating method," Opt. Express 13, 5308-5314 (2005).
[21]C. L. Hou, and J. Bai, "Wavefront Measurement for Long Focal Large Aperture Lens Based on Talbot Effect of Ronchi Grating," (2006), p. 1037.
[22]S. Olivier, V. Laude, and J.-P. Huignard, "Liquid-Crystal Hartmann Wave-Front Scanner," Appl. Opt. 39, 3838-3846 (2000).
[23]J.-S. Lee, H.-S. Yang, and J.-W. Hahn, "Wavefront error measurement of high-numerical-aperture optics with a Shack-Hartmann sensor and a point source," Appl. Opt. 46, 1411-1415 (2007).
[24]http://www.thorlabs.com/NewGroupPage9.cfm?ObjectGroup_ID=884.
[25]M. Dubin, "Scatter, Color Science and Projector Illumination."
[26]http://www.thorlabs.com/thorProduct.cfm?partNumber=BP145B1.
[27]http://www.edmundoptics.com/onlinecatalog/displayproduct.cfm?productID=1912.
[28]http://www.theimagingsource.com/zh_tw/resources/whitepapers/download/fwcamspecwp.zh_tw.pdf.
[29]D. C. Ghiglia, and M. D.Pritt, Two-dimensional Phase Unwrapping: Theory, Algorithms, and Software (A Wiley-Interscience publication, 1998).
指導教授 梁肇文(Chao-wen Liang) 審核日期 2008-11-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明