博碩士論文 952206057 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.139.67.0
姓名 陳昱達(Yu-Ta Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 新型投影機光源之研究
(Research of novel illumination system in the projector)
相關論文
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 新型液晶電視與背光模組的探討分析
★ 高動態範圍雷射測距系統之研製★ 雙燈投影裝置運用於遠距教學之研究
★ 膠囊內視鏡之照明系統設計★ 任意頻率調變式雷射測距儀
★ 膠囊內視鏡之成像鏡頭設計★ 色域映對理論應用於顯示器色彩調校之研究
★ 多原色顯示器之色域探討與亮度優化設計★ 相位移動器校正之研究
★ 色彩調校技術與顯示器構色原理之分析★ 顯示器色彩之視覺疲勞研究
★ 干涉儀相位移動器之精密校正法★ 新型灰階編碼於全像儲存系統之研究
★ 多主色顯示器之研製★ 電校式電阻感測器校正方法之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著時代科技的進步,投影顯示器不論在商用會議、家用電視或是大尺寸的用途,都是具有一定的市佔率,但是傳統投影機光源的壽命、體積及色彩,都是令人垢病的地方,所以本論文提出一個新型投影顯示器光源,具有壽命長、色彩豐富、效率高、體積小及均勻度佳的投影顯示器光源,在目前都是微小化的時代,具有一定優勢。
本論文介紹及比較目前常見的四種投影顯示器,挑出數位微鏡式投影顯示器當做設計目標,且針對數位微鏡式投影顯示器的架構做比較,設計雷射投影機光源系統,建構在全內反射式稜鏡式數位微鏡投影顯示器內,並且跟傳統燈泡光源在傳統的投影顯示器架構下作比較,所設計出的光源系統,具有73.55%系統效率、99.3%的ANSI Uniformity和131%的NTSC面積大小(在CIE1931系統下),雖然在光展量匹配上有很大的損耗,不過這是在傳統投影機架構下,若未來將投影機微小化時,情況將會被改善。
摘要(英) With the progress of science and technology of the times, the projection display is no matter at commercial meeting, home theater or larger use; all have certain taking rate of market. But the traditional projector has some defects which are life-time and color. So we propose a novel projection light source of display in this paper, has long life-time, color, high efficiency and high performance of uniformity in the projection display. In the microfabrication the times, that will be an advantage.
We introduced and compared the four types of projector and regard as our design in the digital micro-mirror device type of the projector, this is called DLP. We design the illumination system with new light source which is built in digital micro-mirror device projection display of TIR prism type and compare the traditional lamp light source and laser light source system with the same projector structure in this paper. Our system has 73.55% of the system efficiency, 99.3% of the ANSI Uniformity and 131% of the NTSC area (under CIE1931 system). We have loss in the Étendue matched but that based on convention structure of projector. If we reduce the size of projector in the future, that defect will be reformed.
關鍵字(中) ★ 雷射投影機
★ 數位微鏡式投影顯示器
關鍵字(英) ★ DLP
★ laser projector
論文目次 中文摘要....................................i
英文摘要...................................ii
誌謝......................................iii
圖目錄....................................vii
表目錄.....................................xi
第一章 緒論.................................1
1-1 前言....................................1
1-2 研究動機與目的..........................1
第二章 投影顯示器簡介.......................4
2-1 投影顯示器種類..........................4
2-1-1 穿透式液晶投影顯示器..................4
2-1-2 反射式液晶投影顯示器..................7
2-1-3 數位微鏡式投影顯示器..................9
2-1-4 掃描式雷射投影顯示器.................13
2-2 單片式數位微鏡式投影顯示器架構.........14
2-2-1 遠心式結構...........................15
2-2-2 非遠心式結構.........................16
2-3 照明系統元件...........................18
2-3-1 燈泡.................................18
2-3-2 光均勻系統...........................21
2-3-3 色輪.................................24
2-3-4 全內反射稜鏡.........................24
2-3-5 投影鏡頭.............................25
2-4 新型投影顯示器光源.....................26
2-4-1 雷射二極體...........................27
2-4-2 二倍頻...............................28
第三章 雷射投影顯示器照明系統設計與分析....30
3-1 照明系統...............................30
3-2 光源擴束系統...........................30
3-2-1 無焦系統設計.........................30
3-3 光源均勻系統設計.......................33
3-3 全內反射稜鏡設計.......................36
3-4 系統分析...............................40
第四章 模擬與實驗結果分析..................46
4-1 光源系統建立...........................46
4-2 模擬結果...............................48
4-3 結果與分析.............................52
第五章 結論與未來展望......................55
5-1 結論...................................55
5-2 未來發展...............................56
第六章 參考文獻............................58
個人著作...................................64
參考文獻 [1] R. Bergstedt, et al., "Microlaser-based displays," in Cockpit Displays IV: Flat Panel Displays for Defense Applications, Orlando, FL, USA, 1997, pp. 362-367.
[2] F. J. Kahn, "21.1: Invited Paper: The Digital Revolution in Electronic Projection Display Technology," SID Symposium Digest of Technical Papers, vol. 31, pp. 302-305, 2000.
[3] T. Mizushima, et al., "L-9: Late-News Paper: Laser Projection Display with Low Electric Consumption and Wide Color Gamut by Using Efficient Green SHG Laser and New Illumination Optics," SID Symposium Digest of Technical Papers, vol. 37, pp. 1681-1684, 2006.
[4] J. Pollmann-Retsch, et al., "Invited Paper: UHP-lamp systems for projection applications," Society for Information Display, vol. 15, pp. 789-798, 2007.
[5] L. J. Hornbeck, "Digital Light Processing for high-brightness high-resolution applications," in Projection Displays III, San Jose, CA, USA, 1997, pp. 27-40.
[6] G. A. Feather and D. W. Monk, "Digital micromirror device for projection display," in Projection Displays, San Jose, CA, USA, 1995, pp. 90-95.
[7] K. M. Johnson, et al., "Smart Spatial Light Modulators Using Liquid-Crystals on Silicon," Ieee Journal of Quantum Electronics, vol. 29, pp. 699-714, Feb 1993.
[8] D. E. Hargis, et al., "Diode-pumped microlasers for display applications," in Fabrication, Testing, Reliability, and Applications of Semiconductor Lasers III, San Jose, CA, USA, 1998, pp. 115-125.
[9] G. Hollemann, et al., "RGB lasers for laser projection displays," in Projection Displays 2000: Sixth in a Series, San Jose, CA, USA, 2000, pp. 140-151.
[10] 顧鴻壽,光電液晶平面顯示器-技術基礎及應用,二版,台北市,新聞京開發出版股份有限公司,民國90年。
[11] M. H. Schuck, et al., "Spin-cast planarization of liquid-crystal-on-silicon microdisplays," Optics Letters, vol. 22, pp. 1512-1514, Oct 1997.
[12] M. H. Kalmanash, "Status of development of LCOS projection displays for F-22A, F/A-18E/F, and JSF cockpits," in Cockpit Displays VIII: Displays for Defense Applications, Orlando, FL, USA, 2001, pp. 161-169.
[13] H. Dai, et al., "Characteristics of LCoS phase-only spatial light modulator and its application," in Materials, Active Devices, and Optical Amplifiers, Wuhan, China, 2004, pp. 270-277.
[14] S. Ohuchi, et al., "Ultra portable LCOS projector with high-performance optical system," Consumer Electronics, IEEE Transactions on, vol. 48, pp. 388-393, 2002.
[15] H. C. Huang, et al., "P-188: Single-Panel Spatial-Color and Sequential-Color LCOS Projectors Using LED Lamps," SID Symposium Digest of Technical Papers, vol. 38, pp. 903-906, 2007.
[16] J. M. Florence and L. A. Yoder, "Display system architectures for digital micromirror device (DMD)-based projectors," in Projection Displays II, San Jose, CA, USA, 1996, pp. 193-208.
[17] V. Markandey, et al., "Motion adaptive deinterlacer for DMD (digital micromirror device) based digital television," Consumer Electronics, IEEE Transactions on, vol. 40, pp. 735-742, 1994.
[18] I. Panahi, et al., "Generate advanced PWM signals using DSPs," Electronic Design, vol. 46, pp. 83-+, May 1998.
[19] M. Scholles, et al., "Ultra compact laser projection systems based on two-dimensional resonant micro scanning mirrors," in MOEMS and Miniaturized Systems VI, San Jose, CA, USA, 2007, pp. 64660A-12.
[20] J. Lee, et al., "Large-Area Laser Projection System Using a White Laser," in SID International Symposium Digest of Technical Papers Boston, USA, 1997, pp. 631-634.
[21] J. Agostinelli, et al., "GEMS: A Simple Light Modulator for High-Performance Laser Projection Display," in International Display Workshops, 2006, pp. 1579-1582.
[22] R. W. Pease, "Overview of technology for large wall screen projection using lasers as a light source," in Large-Screen and Projection Displays II, Santa Clara, CA, USA, 1990, pp. 93-103.
[23] G. Sharp, et al., "LCoS projection color management using retarder stack technology," Displays, vol. 23, pp. 139-144, 2002.
[24] "Single-Panel DLP™ Projection System Optics," Texas Instruments, Application Report, 2001.
[25] G. Derra, et al., "UHP lamp systems for projection applications," Journal of Physics D: Applied Physics, vol. 38, pp. 2995-3010, 2005.
[26] E. H. Stupp and M. S. Brennesholtz, Projection Display. England: Wiley, 1999.
[27] S. O. Kasap, Optoelectronics and Photonics: Prentice Hall, 2001.
[28] 丁勝懋,雷射工程導論,四版,台北市,中央圖書出版社,民國74年。
[29] 孫慶成,光電概論,修訂版,台北市,全華科技圖書股份有限公司,民國86年。
[30] T. Riesbeck and H. J. Eichler, "A high power laser system at 540 nm with beam coupling by second harmonic generation," Optics Communications, vol. 275, pp. 429-432, 2007.
[31] S. Nagahama, et al., "Blue-violet nitride lasers," Physica Status Solidi (A) Applied Research, vol. 194, pp. 423-427, 2002.
[32] T. Miyoshi, et al., "GaN-based high-output-power blue laser diodes for display applications," Journal of the Society for Information Display, vol. 15, pp. 157-160, 2007.
[33] T. Kozaki, et al., "Recent progress of high-power GaN-based laser diodes," in Novel In-Plane Semiconductor Lasers VI, San Jose, CA, USA, 2007, pp. 648503-8.
[34] V. N. Mahajan, Optical Imaging and Aberrations:Part I. Ray Geometrical Optics: SPIE Press, 1998.
[35] E. Hecht, OPTICS, Fourth ed. San Francisco: Addison Wesley, 2002.
[36] R. W. Boyd, Radiometry and the detection of optical radiation. England: Wiley, 1983.
[37] M. Foley and J. Munro, "LP-8: Late-News Poster: Polymer Fly's Eye Light Integrator Lens Arrays for Digital Projectors," SID Symposium Digest of Technical Papers, vol. 31, pp. 870-873, 2000.
[38] M.-C. Kim, "Optically adjustable display color gamut in time-sequential displays using LED/Laser light sources," Displays, vol. 27, pp. 137-144, 2006.
[39] 周清文,「雙燈投影裝置運用於遠距教學之研究」,國立中央大學,碩士論文,民國九十四年。
[40] 李佳惠,「光學投影系統之光路設計與模擬」,私立逢甲大學,碩士論文,民國九十四年。
[41] K. Sato and K. Asatani, "Speckle Noise Reduction in Fiber Optic Analog Video Transmission Using Semiconductor Laser Diodes," Communications, IEEE Transactions on [legacy, pre - 1988], vol. 29, pp. 1017-1024, 1981.
[42] T. Iwai and T. Asakura, "Speckle reduction in coherent information processing," Proceedings of the IEEE, vol. 84, pp. 765-781, 1996.
[43] S. C. Shin, et al., "Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser," Displays, vol. 27, pp. 91-96, 2006.
[44] S. C. Shin and Y. W. Kim, "Removal of speckle using a computer generated random phase hologram plate in green wavelength (532 nm)," in Current Developments in Lens Design and Optical Engineering VII, San Diego, CA, USA, 2006, pp. 62880W-7.
[45] L. Wang, et al., "Speckle Reduction in Laser Projection Systems by Diffractive Optical Elements " Appl. Opt., vol. 37, pp. 1770-1775 KW - Speckle KW - Diffractive optics KW - Lasers and laser optics UR - http://ao.osa.org/abstract.cfm?URI=ao-37-10-1770, 1998.
[46] L. L. Wang, et al., "Speckle reduction in laser projections with ultrasonic waves," Optical Engineering, vol. 39, pp. 1659-1664, Jun 2000.
[47] V. Yurlov, et al., "Speckle suppression in scanning laser display," Appl. Opt., vol. 47, pp. 179-187 KW - Speckle KW - Displays UR - http://ao.osa.org/abstract.cfm?URI=ao-47-2-179, 2008.
[48] M. Stern, et al., "73.3: Ultra-Miniature Projector: A High Resolution, Battery Powered Laser Display," SID Symposium Digest of Technical Papers, vol. 37, pp. 2015-2017, 2006.
[49] S. K. Yun, et al., "A novel diffractive micro-optical modulator for mobile display applications," in MOEMS and Miniaturized Systems VII, San Jose, CA, USA, 2008, pp. 688702-11.
[50] U. Steegmueller, et al., "3.5: Late-News Paper: RGB Laser for Mobile Projection Devices," SID Symposium Digest of Technical Papers, vol. 38, pp. 16-18, 2007.
[51] J.-S. Lin, et al., "RGB LED illuminator for LCoS panel display," in Nonimaging Optics and Efficient Illumination Systems II, San Diego, CA, USA, 2005, pp. 59420Y-10.
指導教授 歐陽盟(Mang Ou-Yang) 審核日期 2008-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明