博碩士論文 952207007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.232.31.206
姓名 張期富(Chi-Fu Chang)  查詢紙本館藏   畢業系所 認知與神經科學研究所
論文名稱 利用跨顱磁刺激探討主動式注意力攫取的神經機制
(Probe the neural mechanisms of contingent attentional capture with transcranial magnetic stimulation)
相關論文
★ 時間及空間對注意力暫失的影響 以及其可能的神經生理機制★ 注意力分配及眼球運動準備歷程對於眼動潛伏時間與眼動軌跡的影響
★ 注意力暫失中的數字表徵: 數字距離對注意力暫失的影響★ 以數學模型及跨顱磁刺激探討注意力分配及眼球運動準備歷程
★ 學齡前兒童之視覺注意力發展及電腦化注意力訓練效果之探討★ 以跨顱磁刺激探討左側下部頂葉以及左側上部頂葉的功能在中文處理中所扮演的角色
★ 性侵害犯的衝動行為表現-情緒狀態如何影響性侵害犯的抑制能力?★ 學齡前階段孩童眼動抑制能力的發展和特性
★ 學齡前階段孩童衝突解決和動作反應抑制能力的發展★ 6歲孩童與成人在數字和具體數量上的自動化處理
★ 期望效果之影響與可能的神經機制★ Attentional reorienting: the dynamic interaction between goal-directed and stimulus-driven attentioinal control
★ 前額葉眼動區在視覺搜尋作業上對不同干擾物特徵與顯示時間扮演的角色★ Roles of the Pre-supplementary Motor Area and Right Inferior Frontal Gyrus in Stimulus Selective Stop-signal task: A Theta Burst Transcranial!Magnetic! Stimulation!Study
★ Investigation of posterior parietal cortex visuospatial control over processing in near and far space using transcranial magnetic stimulation★ Using Transcranial Direct-Current Stimulation to Investigate the Roles of the Dorsal Lateral Prefrontal Cortex and the Temporoparietal Junction in Top-Down and Bottom-Up Conflict Resolution
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 任何事物吸引人們注意力的過程,皆反映了自主性控制與刺激驅動這兩種注意力控制的互動。在探討何種刺激能夠引吸到注意力的優先處理時,主動式注意力攫取說明符合注意力設定的刺激更容易影響注意力處理。本研究利用不同顏色突現刺激建立主動式注意力攫取的現象,發現當突現刺激與目標同色時,其干擾效果最強。即使在使用中央線索提受試者目標位置,同色的突現刺激仍造成顯著的影響。藉由此作業,本研究欲利用跨顱磁刺激探討背後的神經機制。
根據理論模型指出,注意力控制可被劃分為兩個網路。背側側網路主要負責自主性控制,產生注意力設定。而腹側網路則是側化在右邊,負責偵測在自主性控制之外的相關刺激,當相關刺激出現時得以中斷背側網路正在執行的作業,讓注意力能重新導向或分佈至該刺激上。主動式注意力攫取與以上兩者皆有所關聯,本研究各自選擇右側的FEF與TPJ代表背側與腹側系統中的一員,利用跨顱磁刺激探討其中的因果關系。在跨顱磁刺激實驗一、二發現,不論刺激區域為何,在目標出現前施予磁刺激會減少反應時間;而在目標出現之後於FEF施予磁刺激,則延長反應時間,但前述的磁刺激效果皆與主動式注意力攫取無關,磁刺激對任何突現刺激的影響方式皆相同。
根據可能的設計問題,跨顱磁刺激實驗三採用與之前實驗不同的設計,控制注意力可能的移動方向,並納入相容性效應確定突現物是否引發注意力移動。結果發現,在目標出現前刺激FEF與TPJ將降低不相容刺激所造成的干擾,但此一磁刺激效果依舊與主動式注意力攫取無關,磁刺激對於不同突現刺激的影響方式仍然相同。雖然本實驗觀察到FEF與TPJ與注意力處理之間有所關聯,但並無法了解主動式注意力攫取背後可能的神經機制。此結果可能是由於實驗設計上細格內嘗試次不足所致,因許多可能的重要效果其統計顯著不足,此點是未來研究需補足之處。
摘要(英) The interaction between voluntary attentional control and stimulus-driven attentional control may result in the efficiency of the deployment of attention.. Nontarget items that are salient and match for the defining feature of the target can capture attention effectively. This phenomenon is so-called contingent attentional capture because the capture is contingent on that the features of the nontarget need to be consistent with the attentional set of the task. In the present study, we used contingent attentional capture task and repetitive transcranial magnetic stimulation (rTMS) to investigate the neural mechanism of attentional control.
Previous studies showed that two neural networks are involved in two attentional control systems. The dorsal frontoparietal network generates and maintains voluntary control; the ventral frontoparietal network is modulated by attentional shifts to behaviorally relevant stimuli. We choose right frontal eye fields (rFEF) and right temporoparietal junction (rTPJ) as the representative sites of dorsal and ventral networks, respectively. In the first two TMS experiments, rTMS (10Hz, 200 ms) was applied over rFEF either 200 ms before, simultaneously with, or 200 ms after the onset of the visual search array. When rFEF and rTPJ were stimulated before the onset of search array, the overall reaction time was decreased. However, when rFEF were stimulated 200ms after the onset of the stimuli, the reaction time was increased. The results suggested that rFEF may play a causal role in deployment of attention. However, the two experiments did not observe selective modulation of TMS on contingent attentional capture. In the third set of TMS experiments, we applied some modifications to test the attentional shift caused by contingent capture and the results of compatibility effects for the verification that abrupt onset caused attentional shifting into the stage of motor preparation. The results also shown rTMS applied on the both regions would reduce the reaction time cost of incompatible onset regardless of any onset types.
The present results demonstrate the causal relationship between rFEF and visual attention, however, several experiments derived from the current study are needed to be carried out for elucidating the functional roles of rTPJ and rFEF in the control of the contingent attentional capture.
關鍵字(中) ★ 注意力攫取
★ 注意力控制
★ 跨顱磁刺激
關鍵字(英) ★ TPJ
★ attentional capture
★ FEF
★ attentional control
★ TMS
論文目次 一、 緒論 1
1-1 注意力控制 1
1-2 注意力攫取 2
1-2-1 顏色獨特物 2
1-2-2 突現刺激 11
1-2-3 主動式注意力攫取 19
1-3 注意力控制的神經機制 22
1-3-1 背側網路(dorsal frontoparietal network) 26
1-3-2 腹側網路(ventral frontoparietal network) 32
二、 行為實驗一 36
2-1 實驗目的 36
2-2 研究方法 37
2-3 實驗結果與分析 40
2-4 討論 41
三、 TMS 實驗一 42
3-1 實驗目的 42
3-2 研究方法 43
3-3 實驗結果與分析 46
3-4 討論 50
四、 TMS實驗二 53
4-1 實驗目的 53
4-2 研究方法 54
4-3 實驗結果與分析 56
4-4 討論 58
五、 行為實驗二 62
5-1 實驗目的 62
5-2 研究方法 62
5-3 實驗結果與分析 65
5-4 討論 67
六、 TMS實驗三 69
6-1 實驗目的 69
6-2 研究方法 69
6-3 實驗結果與分析 71
6-4 討論 74
七、 綜合討論 77
7-1 主動式注意力攫取 77
7-2 注意力控制的神經生理機制與TMS效果 79
參考文獻 84
參考文獻 Arrington, C. M., Carr, T. H., Mayer, A. R., & Rao, S. M. (2000). Neural mechanisms of visual attention: object-based selection of a region in space. J Cogn Neurosci, 12 Suppl 2, 106-117.
Bacon, W. F., & Egeth, H. E. (1994). Overriding stimulus-driven attentional capture. Percept Psychophys, 55(5), 485-496.
Colby, C. L., Duhamel, J. R., & Goldberg, M. E. (1996). Visual, presaccadic, and cognitive activation of single neurons in monkey lateral intraparietal area. J Neurophysiol, 76(5), 2841-2852.
Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58(3), 306-324.
Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci, 3(3), 201-215.
de Fockert, J., Rees, G., Frith, C., & Lavie, N. (2004). Neural correlates of attentional capture in visual search. J Cogn Neurosci, 16(5), 751-759.
Downar, J., Crawley, A. P., Mikulis, D. J., & Davis, K. D. (2000). A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci, 3(3), 277-283.
Downar, J., Crawley, A. P., Mikulis, D. J., & Davis, K. D. (2001). The effect of task relevance on the cortical response to changes in visual and auditory stimuli: an event-related fMRI study. Neuroimage, 14(6), 1256-1267.
Folk, C. L., Leber, A. B., & Egeth, H. E. (2002). Made you blink! Contingent attentional capture produces a spatial blink. Percept Psychophys, 64(5), 741-753.
Folk, C. L., & Remington, R. (1998). Selectivity in distraction by irrelevant featural singletons: evidence for two forms of attentional capture. J Exp Psychol Hum Percept Perform, 24(3), 847-858.
Folk, C. L., Remington, R. W., & Johnston, J. C. (1992). Involuntary covert orienting is contingent on attentional control settings. J Exp Psychol Hum Percept Perform, 18(4), 1030-1044.
Gibson, B. S., & Kelsey, E. M. (1998). Stimulus-driven attentional capture is contingent on attentional set for displaywide visual features. J Exp Psychol Hum Percept Perform, 24(3), 699-706.
Grosbras, M. H., & Paus, T. (2002). Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J Cogn Neurosci, 14(7), 1109-1120.
Hodsoll, J., Mevorach, C., & Humphreys, G. W. (2008). Driven to Less Distraction: rTMS of the Right Parietal Cortex Reduces Attentional Capture in Visual Search. Cereb Cortex.
Indovina, I., & Macaluso, E. (2007). Dissociation of stimulus relevance and saliency factors during shifts of visuospatial attention. Cereb Cortex, 17(7), 1701-1711.
Jonides, J., & Yantis, S. (1988). Uniqueness of abrupt visual onset in capturing attention. Percept Psychophys, 43(4), 346-354.
Juan, C. H., Muggleton, N. G., Tzeng, O. J., Hung, D. L., Cowey, A., & Walsh, V. (2008). Segregation of Visual Selection and Saccades in Human Frontal Eye Fields. Cereb Cortex.
Kincade, J. M., Abrams, R. A., Astafiev, S. V., Shulman, G. L., & Corbetta, M. (2005). An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J Neurosci, 25(18), 4593-4604.
Leber, A. B., & Egeth, H. E. (2006). It's under control: top-down search strategies can override attentional capture. Psychon Bull Rev, 13(1), 132-138.
Muggleton, N. G., Juan, C. H., Cowey, A., & Walsh, V. (2003). Human frontal eye fields and visual search. J Neurophysiol, 89(6), 3340-3343.
Remington, R. W., Folk, C. L., & McLean, J. P. (2001). Contingent attentional capture or delayed allocation of attention? Percept Psychophys, 63(2), 298-307.
Serences, J. T., Shomstein, S., Leber, A. B., Golay, X., Egeth, H. E., & Yantis, S. (2005). Coordination of voluntary and stimulus-driven attentional control in human cortex. Psychol Sci, 16(2), 114-122.
Serences, J. T., & Yantis, S. (2007). Spatially selective representations of voluntary and stimulus-driven attentional priority in human occipital, parietal, and frontal cortex. Cereb Cortex, 17(2), 284-293.
Shulman, G. L., Astafiev, S. V., McAvoy, M. P., d'Avossa, G., & Corbetta, M. (2007). Right TPJ Deactivation during Visual Search: Functional Significance and Support for a Filter Hypothesis. Cereb Cortex.
Shulman, G. L., McAvoy, M. P., Cowan, M. C., Astafiev, S. V., Tansy, A. P., d'Avossa, G., et al. (2003). Quantitative analysis of attention and detection signals during visual search. J Neurophysiol, 90(5), 3384-3397.
Shulman, G. L., Ollinger, J. M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Petersen, S. E., et al. (1999). Areas involved in encoding and applying directional expectations to moving objects. J Neurosci, 19(21), 9480-9496.
Theeuwes, J. (1991). Cross-dimensional perceptual selectivity. Percept Psychophys, 50(2), 184-193.
Theeuwes, J. (1991). Exogenous and endogenous control of attention: the effect of visual onsets and offsets. Percept Psychophys, 49(1), 83-90.
Theeuwes, J. (1992). Perceptual selectivity for color and form. Percept Psychophys, 51(6), 599-606.
Theeuwes, J. (2004). Top-down search strategies cannot override attentional capture. Psychon Bull Rev, 11(1), 65-70.
Theeuwes, J. (2008). The role of cueing in attentional capture. Visual Cognition, 16(2), 232-247.
Theeuwes, J., & Burger, R. (1998). Attentional control during visual search: the effect of irrelevant singletons. J Exp Psychol Hum Percept Perform, 24(5), 1342-1353.
Wu, S. C., & Remington, R. W. (2003). Characteristics of covert and overt visual orienting: Evidence from attentional and oculomotor capture. J Exp Psychol Hum Percept Perform, 29(5), 1050-1067.
Yantis, S., & Jonides, J. (1984). Abrupt visual onsets and selective attention: evidence from visual search. J Exp Psychol Hum Percept Perform, 10(5), 601-621.
Yantis, S., & Jonides, J. (1990). Abrupt visual onsets and selective attention: voluntary versus automatic allocation. J Exp Psychol Hum Percept Perform, 16(1), 121-134.
指導教授 阮啟弘(Chi-Hung Juan) 審核日期 2008-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明