博碩士論文 952210001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.133.146.143
姓名 李育融(Yu-Jung Li)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱 細胞分化與腫瘤生長之理論模型
(A Theoretical Model for Both Embryogenesis and Carcinogenesis)
相關論文
★ The Rheological Properties of Invasive Cancer Cells★ Case study of an extended Fitzhugh-Nagumo model with chemical synaptic coupling and application to C. elegans functional neural circuits
★ 二維非彈性顆粒子之簇集現象★ 螺旋狀高分子長鏈在拉力下之電腦模擬研究
★ 顆粒體複雜流動之研究★ 高分子在二元混合溶劑之二維蒙地卡羅模擬研究
★ 帶電高分子吸附在帶電的表面上之研究★ 自我纏繞繩節高分子之物理
★ 高分子鏈在強拉伸流場下之研究★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為
★ 最佳化網路成長模型的理論研究★ 高分子鏈在交流電場或流場下的行為
★ 驟放式發火神經元的數值模擬★ DNA在微通道的熱泳行為
★ 對藍綠藻概日韻律之Kai蛋白震盪模型的非線性分析★ 皮膚細胞增生與腫瘤生長之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 利用細胞帕茲模型,我們建立了一個關於細胞分化與癌症發展模型。我們假設了細胞分化狀態與其分裂速度、以及細胞間的交互作用有關。利用這樣的模型,我們不只可以模擬胚胎發育過程,還能模擬癌化過程的病理切片下所觀察到的腫瘤結構。在電腦的模擬過程中,我們使用蒙地卡羅原則,利用二維格點分析,使質點可以在所有格點上面做隨機運動。此外,空的格點可以根據其鄰近的質點改變其狀態,用來模擬細胞分裂,並且所有的非零質點狀態皆有機會恢復為空的格點,用來模擬細胞死亡。根據模擬結果,我們發現當腫瘤細胞之間的作用力小於一個臨界點,會造成細胞的大量增生。另外,當細胞之間的作用力增加,會在腫瘤細胞的增生過程中,形成明顯的團狀結構;而當此作用力減小,腫瘤的生長則會形成比較類似擴散狀態的表現。而這些生長表現與腫瘤的預後相關,並可作為臨床病理切片的印證。
摘要(英) By utilizing the generalized cellular Potts model (CPO), we propose a model for both cell differentiation and carcinogenesis. Employing different cell-cell interaction energies, this model can describe different stages of cell differentiations. Cell aggregation and organogenesis during the processes of embryogenesis are simulated in the model by Monte Carlo method. The motions of different types of cells (q states) represent as random walkers on a two-dimensional square lattice. Besides, a vacant site can change its state according to its neighboring cells in order to mimic cell proliferations. And all the cells can have chances to become vacant to mimic cell death. This model can also describe the process of carcinogenesis and other tumorigenesis including both benign and malignant tumors. Our results suggest that there exists critical interaction strength and below which the number of the tumor cells will increase rapidly. Various pattern formations are also observed with different particle interactions, which can be associated to clinical findings. These cells may either aggregate into a cluster or appear more diffusively. These growth patterns relate to tumor prognosis and may provide some hints for further pharmacology design for anti-neoplasm agents.
關鍵字(中) ★ 癌化過程
★ 細胞生長
★ 細胞分化
★ 細胞帕茲模型
★ 蒙地卡羅模擬
關鍵字(英) ★ Cell differentiation
★ cell growth
★ Carcinogenesis
★ Cellular Potts model (CPO)
★ Monte Carlo simulation
論文目次 Table of Contents
Acknowledgments………………………….……………………………………………...i
Abstract……………………………………………………………………………………ii
Table of Contents…………………………………………………………………………iv
List of Figures ...................................................................................................................vii
List of Tables ..............................................................................................................…...ix
Chapter I: Biological points of view in carcinogenesis and embryogenesis
Introductions of embryogenesis and carcinogenesis………………………………………1
Cell proliferations and differentiations………………………………………………2
Embryogenesis………………………………………………………………………….…3
Fertilization..…………………………………………………………………………3
Cleavage……………………………………………………………………………...5
Gastrulation.………….………………………………………………………………6
Carcinogenesis………………………………………………………………………….…9
Our simulating target for biological events……………………………………….…9
Neoplasms: benign and malignancy…………….………………………………….14
Classifications of the cancer…………………..……………………………………15
Progressions of cancer……………………………………………………………...16
TNM staging…………………………………………………………………..16
Cell differentiation…………………………………………………………….18
Managements of cancer…………………………………………………………….19
Surgery………………………………………………………………………...19
Radiotherapy…………………………………………………………………..20
Chemotherapy…………………………………………………………………20
Chapter II: Cellular Potts model for embryogenesis and carcinogenesis
Introduction of Potts model……………………………………………………………...23
Hamiltonian of Potts model………………………………………………………...23
Partition function of Potts model…………………………………………………...24
General descriptions for the Cellular Potts model………..……………………………...26
Cellular Potts model applied in developmental biology…………………………....26
Cellular Potts model for cell differentiations and cell de-differentiations……………….28
Particles with or without interactions in an isolated system……………………..…28
Do all living things die?....................................…….................................................29
Hypothesis and basic concepts of our model..………………….…………………..33
Embryogenesis in ideal metazoan…………………...………………………...35
Carcinogenesis………………………………………………………………...36
Chapter III: Computer simulation results and discussions
Computer simulation of our model……………………….……………………...………39
Particles in our model………………………………………………………………40
Simulation procedure………………..……………………………………………...42
Position exchange……………………………………………………………..42
Flipping………………………………………………………………………..44
Cell death……………………………………………………………………...45
Parameter selections………………………………………………………………...46
Simulating target………………………………………………………………46
Control variables………………………………………………………………47
Operation variables……………………………………………………………47
Measurement for particle diffusion as tumor spread……………………………….49
Phase separation parameter (Ψ)……………………………………………….49
Radius of gyration (Rg) of A* and A………………………………………….52
Fraction of each cell type……………………………………………………...52
Results……………………………………………………………………………………53
Radius of gyration (Rg) of A* and A: without flipping…………………………….53
Radius of gyration (Rg) of A* and A: with flipping………………………………..56
Phase separation parameter (Ψ): without flipping………………………………….58
Phase separation parameter (Ψ): with flipping……………………………………..60
Fractions of each cell types……………….……………………...…………………61
Real biological events and patterns formation……………….……………………..63
Discussions………………………………………………………………………………73
Chapter IV: Conclusions
Model fitness and its limitations…………………………………...…………………….75
Biological applications and further investigations……………………………………….76
Reference……………………...……………………………………………………...…78
Flow charts……………………………………………………………………………...81
Appendix………………………………………………………………………………...85
參考文獻 Reference:
1. Gilbert S.F. (eds) “Developmental Biology.” 8 (edn). Sinauer Associates, Inc. (2006)
2. Bruce, A., Alexander, J., Julian, L., Martin, R., Keith, R., and Peter, W. http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mboc4.section.3738 , Molecular Biology of the Cell. Fourth Edition. (2002)
3. Kelley, Steever, Haberek, Chariho Middle School Library Media Center, http://www.chariho.k12.ri.us/cms/library/images/reproduction/fertilization3.jpg ,(2007)
4. Robert, E. M., Diane, S., et. al. (eds) Oral and Maxillofacial Pathology. 1-st (edn) Quintessence Publishing Co, Inc. Carol Stream, Illinois. ISBN: 0-86715-390-3 (2003)
5. AJCC Cancer Staging Manual. 8 (edn). Springer-Verlag, New York. (2002)
6. Denoix, P.F. Enquete permanent dans les centres anticancereaux. Bull Inst Nat Hyg 1946;1:70-5. (1952)
7. Li, B.K., Cui, B.K., Yuan, Y.F., et al. "Evaluation of new TNM staging system for hepatocellular carcinoma after hepatectomy".(2005).
8. Quirke, P., Morris, E. "Reporting colorectal cancer". Histopathology 50 (1): 103–12. (2007)
9. Friedman, A. A hierarchy of cancer models and their mathematical challenges, Discrete and continuous dynamical systems-series. B 2, 147, (2004)
10. Dean, M. and Bates, S. umor stem cells and drug resistance. Nature Rev., 5:275–283. (2005).
11. Merlo, L. M. F., Pepper, J. W., Reid, B. J., and Maley, C. C. Cancer as an evolutionary and ecological process. Nature Rev. Cancer, 6:924–935. (2006).
12. Weinberg, R. A. The biology of cancer. Garland Science, New York. (2007).
13. Friedman, A. A hierarchy of cancer models and their mathematical challenges, Discrete and continuous dynamical systems-series B 2, 147, (2004)
14. Ricard, V. et al Cancer stem cells as the engine of tumor progression, (2007)
15. David, D, Franziska, M. Successful Therapy Must Eradicate Cancer Stem Cells. Stem Cells 24:2603–2610, (2006)
16. Ashkin, J., Teller, E. Statistics of Two-Dimensional Lattices with Four Components. Physical Review. Vol. 64, No. 5 and 6 (1943).
17. Potts Renfrey, B. Some Generalized Order-Disorder Transformations. Proceedings of the Cambridge Philosophical Society, Vol. 48, pp. 106−109. (1952).
18. Tucker, Alan. Applied Combinatorics, Fourth Edition. John Wiley and Sons, Inc. Hoboken, NJ. (2002).
19. Cipra, B. Statistical Physicists Phase Out a Dream. Science. Vol 288 Issue 5471, p1561. June (2000).
20. Chang, S.C., Shrock, R. Exact partition function for the Potts model with next-nearest neighbor couplings on arbitrary-length ladders. International Journal of Modern Physics B, Vol. 15, No. 5 443-478. (2001).
21. Welsh, D. J. A.; Merino, C.The Potts model and the Tutte polynomial. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. Vol. 41, No. 3, 1127--1152. (2000).
22. Roeland, M.H., Glazier, J.A., A cell-centered approach to developmental biology. Physica A 352, 113–130. (2005).
23. Hogeweg, P., Evolving mechanisms of morphogenesis: on the interplay between differential adhesion and cell differentiation, J.Theor.Biol. 203, 317–333. (2000).
24. Kesmir, C.,De Boer R.J., A spatial model of germinal center reactions: cellular adhesion based sorting of B cells results in efficient affinity maturation, J. Theor. Biol. 222, 9–22. (2003).
25. Turner, S., Sherratt, J.A., Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model, J. Theor. Biol.216, 85–100. (2002).
26. Savill, N.J., Sherratt, J.A., Control of epidermal cell clusters by notch-mediated lateral inhibition, Dev. Biol.258, 141–153. (2003).
27. Zeng, W., Thomas, G.L., Glazier, J.A., Non-Turing stripes and spots: a novel mechanism for biological cell clustering, Physica A 341, 482–494. (2004).
28. Zajac, M., Jones, G.L., Glazier, J.A., Simulating convergent extension by way of anisotropic differential adhesion, J. Theor. Biol. 222, 247–259. (2003).
29. Merks, R.M.H., Newman, S.A., Glazier, J.A., Cell-oriented modeling of in vitro capillary development, in: P.M.A. Sloot, Chopard, B., Hoekstra, A.G. (eds.), Cellular Automata. Sixth International Conference on Cellular Automata for Research and Industry, Lecture Notes in Computer Science (edn), vol.3305, Spinger, Berlin, pp.425–434. (2004)
30. Mare´e, A.F.M., Hogeweg, P., How amoeboids self-organize into a fruiting body: multicellular coordination in Dictyostelium discoideum, Proc.Natl.Acad.Sci.98, 3879–3883. (2001).
31. Vittorio, C., Lowengrub, J., Nie, Q. Nonlinear simulation of tumor growth. J. Math. Biol. 46, 191-224. (2003).
32. David, J. A., et. al. (eds) Squamous Cell Head and Neck Cancer: Recent Clinical Progress and Prospects for the Future. 1-st (edn) Humana Press Inc. Totowa, New Jersey. ISBN: 1-58829-473-0 (2005)
指導教授 黎璧賢(Pik-Yin Lai) 審核日期 2009-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明