博碩士論文 952210002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.216.190.167
姓名 羅崑銘(Kun-Ming Lo)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱 用氘核磁共振儀研究含高濃度麥角脂醇的DPPC人造膜之分子交交互作用
(Molecular Interaction in Lipid Mixtures Containing DPPC and High Concentration of Ergosterol: A Deuterium NMR Study)
相關論文
★ Fluorescence study of lipid membranes containing sterol★ 含固醇的脂質雙層膜的形態及相行為的研究
★ The effects of composition and thermal history on the properties of supported lipid bilayers★ The effect of sterol on the POPE/DPPC membranes
★ 麥角固醇對含膽固醇的脂雙層膜的影響★ Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes
★ Deuterium NMR Study of the effect of 7- dehydrocholesterol on the POPE Membranes★ 運用氘核磁共振儀研究POPC/cholesterol膜之物理性質
★ 模型細胞膜(含有相同碳鏈的PC/PE)存在或缺乏固醇類的物理性質★ 運用氘核磁共振研究DPPC/POPE/sterol人造細胞膜之物理性質
★ Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study★ The physical properties of phytosterol-containing lipid bilayers
★ An AFM Study on Supported Lipid Bilayers with and without Sterol★ β-谷固醇對POPE膜物理特性的影響
★ 固醇結構對PC膜物理特性的影響★ 人造細胞膜的相行為及脂質-固醇交互作用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 我們使用氘核磁共振儀(2H NMR)研究由1,2-palmitoyl-sn-glycero-3-phosphocholine(DPPC)所組成,且含有高濃度(≧40mol%)麥角酯醇的人造細胞膜之物理性質。我們以氘取代DPPC在sn-1鏈上的氫,其光譜會隨著溫度及麥角酯醇的濃度(直到80mol%以上)而改變。當溫度高於相變溫度時,細胞膜呈現液晶有序相,我們發現不同的麥角酯醇濃度對DPPC長鏈部分的有序程度會有不同的影響:隨著麥角酯醇的濃度的增加到40mol%之前,長鏈的有序程度也跟著增加;一旦濃度達到50~80mol%,長鏈的有序程度卻隨濃度的增加而減少。在這兩個固醇濃度區間下,DPPC與麥角酯醇表現不同的交互作用。
膽固醇與麥角酯醇都會消弱DPPC在膠相與液晶無序相之間的相變,此兩種固醇分別都在低於相變溫度時減少DPPC的有序程度,而在高於相變溫度的時候增加DPPC的有序程度。然而無論在何種溫度範圍,麥角酯醇的作用比膽固醇的作用微弱。因此固醇在結構上的差異,對脂質與固醇間的交互作用有顯著的影響。此外固醇結構隨著溫度高於相變溫度或低於相變溫度,對DPPC碳鏈有序程度有不同的影響:固醇結構在溫度低於相變溫度時影響DPPC整條碳鏈的有序程度;然而在溫度高於相變溫的時候,僅影響C2-C12的有序程度。
摘要(英) We have studied the physical properties of 1,2-palmitoyl-sn-glycero-3- phosphocholine (DPPC) membranes containing high concentrations of ergosterol (≧40 mol%) using deuterium nuclear magnetic resonance (2H NMR). The sn-1 chain of DPPC was perdeuterated and spectra were taken as a function of temperature and ergosterol concentration up to 80mol%. It is striking that the DPPC chain order exhibit different ergosterol dependence at different ergosterol concentration ranges for a given temperature in the liquid-ordered phase. The chain order increases with increasing ergosterol up to 40 mol% erg, then decreases as ergosterol increases from 50 to 80 mol% at high temperature. DPPC interacts with ergosterol differently at these two ergosterol concentration ranges.
Both ergosterol and cholesterol eliminate the phase transition between a gel phase and the ld phase of DPPC. They decrease and increase the order of DPPC below and above Tm, respectively. However, the effect of ergosterol is weaker than cholesterol. Therefore the structural difference in sterols has significant effect on the lipid-sterol interaction. Furthermore, the structural difference between ergosterol and cholesterol influences the DPPC chain differently below and above Tm. At temperatures below Tm, it affects the order of the whole DPPC chain. Above Tm, however, it only affects the order of C2-C12 segments of the DPPC chain.
關鍵字(中) ★ 核磁共振儀
★ 膽固醇
★ 人造細胞膜
★ 麥角脂醇
★ DPPC
關鍵字(英) ★ NMR
★ cholesterol
★ ergosterol
★ DPPC
★ model membrane
論文目次 Content
Abstract
Acknowledgement
Content
List of Figures
Chapter.1 Introduction 1
1.1 Lipid membrane 1
1.2 DPPC-d31 4
1.3 Cholesterol and ergosterol 7
1.4 our work 9
Chapter.2 Materials and Methods 12
2.1 Sample preparation 12
2.2 Nuclear Magnetic Resonance 13
2.2.1 NMR Principle 13
2.2.2 Segment smoothed order profile (SCD) 18
2.2.3 Average chain order parameter (first moment) 22
2.2.4 Hardware 24
Chapter3 Results and Discussions 27
3.1 DPPC-d31 at high concentration of ergosterol study 27
3.2 Compare effect for high concentration ergosterol with that for cholesterol 33
Chapter4 Conclusions 40
References 42
參考文獻 References
[1] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of the Cell. Fifth Edition (2008).
[2] H. Lodish, A. Berk, L. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell. Molecular Cell Biology. Fourth Edition (2000).
[3] S. J. Singer and G. L. Nicolson. The fluid mosaic model of the structure of cell membranes. Science 175 (1972) 720–731.
[4] K. Simons, and E. Ikonen. Functional rafts in cell membranes. Nature 387 (1997) 569-572.
[5] D.A. Brown, and E. London. Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochemical And Biophysical Research Communications 240 (1997) 1–7.
[6] S. Mukherjee, and F.R. Maxfield. Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1 (2000) 203-211.
[7] Visveswaran Thiagarajan, B.E.Ch.E Domain Formation in Cholesterol / POPE / POPC Lipid Bilayer Membranes. Thesis in Chemical Engineering (2005) Texas Tech University.
[8] D.A. Brown, and E. London. Functions of lipid rafts in biological membranes. Annual Review of Cell and Developmental Biology 14 (1998) 111-136.
[9] X. Xu, and E. London. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39 (2000) 844-849.
[10] Y. W. Hsueh, K. Gilbert, C. Trandum, M. Zuckermann, and J. Thewalt. The effect of ergosterol on dipalmitoylphosphatidylcholine bilayers: A deuterium NMR and calorimetric study. Biophysical Journal 88 (2005) 1799-1808.
[11] J. F. Nagle and S. Tristram-Nagle. Structure of lipid bilayers. Biochimica et Biophysica Acta 1469 (2000) 159-195
[12] S. Raffy, and J. Teissié. Control of Lipid Membrane stability by cholesterol Content. Biophysical Journal 76 (1999) 2072-2080.
[13] Veatch, S. L. Liquid immiscibility in model bilayer lipid membranes. PhD thesis. University of Washington(2008).
[14] K. Simons, and E. Ikonen. How cells handle cholesterol. Science 290 (2000) 1721-1726.
[15] E. London. Insights into lipid raft structure and formation from experiments in model membranes. Current Opinion in Structural Biology 12 (2002) 480–486.
[16] K. Simons, and W. L. Vaz. Model systems, lipid rafts, and cell membranes1. Annual Review of Biophysics and Biomolecular Structure 33 (2004)269-295.
[17] H. Ohvo-Rekilä, B. Ramstedt, P. Leppimäki, and J. P. Slotte. Cholesterol interactions with phospholipids in membranes. Progress in Lipid Research 41 (2002) 66-97.
[18] K. Simons, and D. Toomre. Lipid rafts and signal transduction. Nature Reviews Molecular Cell Biology 1 (2000) 31-39.
[19] J.A. Porter, K.E. Young, and P.A. Beachy. Cholesterol modification of hedgehog signaling proteins in animal development. Science 274 (1996) 255-259.
[20] T. F. Osborne, and J. M. Rosenfeld. Related membrane domains in proteins of sterol sensing and cell signaling provide a glimpse of treasures still buried within the dynamic realm of intracellular metabolic regulation. Current Opinion in Lipidology 9 (1998) 137-140.
[21] J. Sakai, R. B. Rawson, P. J. Espenshade, D. Cheng, A.C. Seegmiller, J. L. Goldstein, and M. S. Brown. Molecular identification of the sterol-regulated luminal protease that cleaves SREBPs and controls lipid composition of animal cells. Molecular Cell 2 (1998) 505-514.
[22] X. M. Li, M. M. Momsen, H. L. Brockman, and R. E. Brown. Sterol Structure and Sphingomyelin. Acyl chain length modulate lateral packing elasticity and detergent solubility in model membranes. Biophysical Journal 85 (2003) 3788-3801.
[23] J. A. Clarke, A. J. Heron, J. M. Seddon, and R. V. Law. The diversity of the liquid ordered (Lo) phase of phosphatidylcholine / cholesterol membranes: A variable temperature multinuclear solid-state NMR and X-ray diffraction study. Biophysical Journal 90 (2006) 2383–2393.
[24] R. A. Cooper., M. Diloy-Puray, P. Lando, and M. S.Greenberg. An analysis of lipoproteins, bile acids and red cell membranes associated with target cells and spur cells in patients with liver disease. The Journal of Clinical Investigation 51 (1972) 3182-3192.
[25] T. N. Tulenkoa, M. Chena, P. E. Masonb, and R. P. Masonb. Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. The Journal of Lipid Research 39 (1998) 947-956.
[26] J. Huang, J. T. Buboltz, and G. W. Feigenson. Maximum solubility of cholesterol in phosphatidylcholine and phosphatidylethanolamine bilayers. Biochimica et Biophysica Acta 1417 (1999) 89-100.
[27] N. Campbell, J. Reece, and L. Mitchell. Biology. Fifth Edition (1999).
[28] D. Huster, K. Arnold, and K. Gawrisch. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures. Biochemistry 37 (1998) 17299-17308.
[29] Y. W. Hsueh, M. T. Chen, P. J. Patty, C. Code, J. Cheng, B. J. Frisken, M. Zuckermann, and J. Thewalt. Ergosterol in POPC membranes: Physical properties and comparison with structurally similar sterols. Biophysical Journal 92 (2007) 1606-1615.
指導教授 薛雅薇(Ya-Wei Hsueh) 審核日期 2009-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明