博碩士論文 952211010 詳細資訊


姓名 柯懿婷(Yi-Ting Ke)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 水稻第三群LEA基因在發育時期與逆境表現之探討
(Characterization of rice group 3 late embryogenesis abundant (LEA) genes expression during development stages and stresses)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 ( 永不開放)
摘要(中) Late embryogenesis abundant (LEA) 蛋白質會大量表現與累積於植物胚胎發育後期。根據這一類蛋白質的胺基酸序列相似性及收斂序列特徵,可將此類蛋白質至少區分成五群 (group)。根據前人的研究,LEA 基因會因離層酸 (ABA)、高鹽、乾旱、或是低溫等逆境誘導而表現; LEA蛋白質已被證明可在植物遭受逆境時,參與調節生理反應的角色: 如在乾燥的環境下與水分子結合維持細胞中的水含量、調節離子的種類、保護其他細胞內蛋白質及膜狀胞器的穩定性,亦有研究顯示它們可調節植物的正常發育。
第三群LEA蛋白質具有由11個胺基酸(TEAAKQKAAET)所組成的收斂(consensus)區域且重複出現數次。由於離層酸、鹽分及乾燥或是滲透壓引起的環境變化,皆能誘導此群LEA基因表現,因此第三群LEA蛋白質在植物遭遇逆境時,扮演著不可或缺的角色。大麥HVA1已被歸類於第三群LEA蛋白質,研究顯示將HVA1基因轉殖到水稻,可增加水稻對於乾旱的耐受性;其他的研究也指出含有第三群LEA基因的轉殖作物對鹽分、溫度亦具有較佳的適應能力;即使有這些實驗所得,我們對於第三群LEA蛋白質的結構與生理功能及其在細胞中所扮演的角色,卻還有許多不明瞭的地方。
水稻是一個重要的作物、亦被視為單子葉植物研究中的模式生物。本篇研究利用大麥HVA1蛋白質序列為模板,利用序列相似性比對 (BLAST),由水稻基因體資料庫中篩選出五個水稻第三群LEA蛋白質,在資料庫中的基因/蛋白質序號分別為: AP004018/BAD19162, AP003381/BAB86507, AC073556/AAL84288, AC098833/AAU43988, AP000836/BAD81113. 分析這些基因序列特性、在發育時期及環境逆境下之基因表現狀況。結果顯示: 在生殖生長期,這五個基因在水稻植株授粉前即可測得表現量,持續到開始脫水的糊熟期時,基因表現量達高峰並延續至種子成熟;在營養生長期,可調解生長發育與遭遇環境逆境時維持正常生理功能。由基因表現數據得知,這些基因具有組織專一性,特定發育時期或逆境時,只能在特定部位偵測到基因表現訊號。利用洋蔥表皮細胞短暫表現系統研究AP004018-GFP, AP003381-GFP, AC073556-GFP, AC098833-GFP, 與AP000836-GFP綠螢光融合蛋白質在細胞內表現位置,結果顯示這些基因在不同逆境下,在洋蔥表皮細胞內會有不同的分布位置:如在離層酸或低溫處理時, AP003381、AC073556會往細胞核處集中;AC073556、AC098833處理離層酸,AP004018、 AC073556、AC098833處理氯化鈉,AP004018、AC098833在4℃低溫時在細胞質有聚集現象;AC073556在離層酸及氯化鈉,AP004018、AP003381、AC073556及AC098833 低溫處理下,集中在細胞邊緣,可能跟細胞膜的穩定性有關,此外,在正常的情況下,可以發現這些綠螢光融合蛋白質會表現在細胞核、細胞質及細胞膜。
摘要(英) Late embryogenesis abundant (LEA) proteins were initially found in the stage of embryo maturation. According to amino acid sequence similarities and conserved motifs, the LEA proteins can be separated into more than five groups. It is known that abscisic acid (ABA), salt, drought or cold stress can induce expression of the lea genes, conferring stress tolerance to plant cells. LEA proteins have been shown to involve in binding and replacement of water molecule, ion sequestration, maintaining of protein or cell membrane structure, and development regulation. Group 3 LEA proteins are characterized by 11-mer amino acid conserved tandem repeats (TEAAKQKAAET) and considered as the stress proteins. Barley HVA1, a member of group 3 LEA proteins, has been reported that it can improve stress tolerance in transgenic plants. However, its exact physiological functions still remain unclear. In this study we used the sequence BLAST to search Group 3 LEA protein orthologues in rice genome database and identify five lea3-like genes. They are AP004018/BAD19162, AP003381/BAB86507, AC073556/AAL84288, AC098833/AAU43988, AP000836/BAD81113 (gene/protein accession number). Here we were trying to characterize their gene sequence organization and expression patterns during developmental stages and environmental stresses. The results showed that these LEA genes played important roles on regulation of plant growth and response for varied stresses, and tissue-specific expression in root, stem, leaf, and seed. Furthermore, cellular localization analysis of the AP004018-GFP, AP003381-GFP, AC073556-GFP, AC098833-GFP, and AP000836-GFP fusion proteins in onion epidermal cells indicated that rice group 3 LEA proteins could be in nucleus (AP003381, AC073556 under ABA or 4℃ treatment), cytoplasm (AC073556, AC098833 under ABA; AP004018, AC073556, AC098833 under NaCl; AP004018, AC098833 under 4℃ treatment), or membrane structure (AC073556 under ABA and NaCl; AP004018, AP003381, AC073556, and AC098833 under 4℃ treatment ), whereas these fusion proteins localize in either nucleus or cytoplasm under non-stress conditions.
關鍵字(中) ★ 逆境
★ 發育時期
★ 水稻
關鍵字(英) ★ stress
★ development
★ rice
論文目次 Table of contents………………………………………………………………………………I
Chinese abstract……………………………………………….….…………..………..…III
English abstract ……………………………………………….……………...………….V
List of abbreviations…………………………………………………………………..…....VII
Chapter 1. Introduction…………………………………..……….……..………………...1
Environment and stresses………………….………….………..………….……….1
Properties of LEA proteins…………………..….……….……..……………….…...2
The classification of LEA proteins………………………...…………..…………….2
Physiological functions of LEA proteins……………………………………………5
Specific aim of this thesis……………………………………………………………8
Chapter 2. Materials and Methods……………………………………………………10
2.1 Bioinformatics analysis and data mining………………………………………….….10
2.2 Plant materials………………………………………...………………………………..11
2.3 Total RNA extraction……………………………………...…………………………....11
2.4 Reverse transcriptional polymerase chain reaction………………………………...13
2.5 Polymerase chain reaction and transformation……………………………………..14
2.6 Preparation of plasmid DNA………………….…………………………………….…18
2.7 Gel elution…………………………….………………………………………………...19
2.8 Transient expression of promoter activities to different stresses………….……...20
2.9 Functional localization analysis……………………………………………………….24
Chapter 3. Results……………………………………………..……….…………………28
3.1 Orthologues of HVA1 in rice share same motif sequence and are ABA inducible
…………...……………………………………………………………………………28
3.2 Characterization for gene expression of rice group 3 lea genes during
development stages and stresses………………………………………………......29
3.3 Analysis of the promoters of rice group 3 lea genes under stresses……...31
3.4 LEA-GFP fusion proteins showed different subcellular localization under stress
treatments……………………………………………………………………………...32
Chapter 4. Discussion………………….………………………………………………33
Conserved amino acids were identified in the motif of rice group 3 LEA proteins
………………………………………………………………………………………..33
Analysis of phylogenic tree and evolution of rice group 3 lea genes………….33
Rice CBF2 gene (RCBF2) as a marker.…………………………………………..34
Physiological role of LEAs………………………………………………………….34
Prospects of LEAs…………………………………………………………………..35
Chapter 5. Tables and Figures…………………………………………………………36
Table 1. Selected genes in this study……………………………………………………36
Table 2. List of primers used in this study………………………………………………38
Table 3. Analysis of cis-acting regulatory elements on promoter regions of rice lea 3
genes………………………………………………………………………….......40
Table 4. Profiles of gene expression pattern……………………………………………42
Figure 1. Responsiveness of rice lea 3 genes to ABA treatment………………………46
Figure 2. Multiple sequence alignment of group 3 LEA proteins……………………….47
Figure 3. Analysis of hydropathicity and intrinsic disorder tendency structure………49
Figure 4. Overview of rice Tainung 67 (TNG67) growth and development stages…53
Figure 5. Expression patterns of rice lea 3 genes during developmental stages and
stress treatments…………………………..…………………………………55
Figure 6. Promoter activities of rice lea 3 genes analyze by Arabidopsis protoplast
cells………………………………………………………………………………66
Figure 7. Subcellular localization of rice LEA- GFP fusion proteins analyze by onion
epidermal cells…………………………………………………………………69
Chapter 6. References……………………………………………………………………75
Chapter 7. Appendix………………………………………………………………………80
I. Gene expression profile: electrophoresis images and normalized data…80
(A) Rice grains imbibitions in water with different time course………………………80
(B) 20-day-old rice seedling in different stress with time course……………………81
(C) Rice tillering stage in different stress and time course…………………………88
(D) Rice panicle stage in different stress and time course………………………95
(E) Seed maturation stage expression data…………………………………….…102
II. The promoter region sequences of five lea genes………………………………….104
III. Description of Cis-acting elements…………………………………………………..105
參考文獻 Abba S, Ghignone S, Bonfante P (2006) A dehydration-inducible gene in the truffle Tuber borchii identifies a novel group of dehydrins. BMC Genomics 7: 39
Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131: 1748-1755
Artus NN, Uemura M, Steponkus PL, Gilmour SJ, Lin C, Thomashow MF (1996) Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both chloroplast and protoplast freezing tolerance. Proc Natl Acad Sci USA 93: 13404-13409
Battista JR, Park MJ, McLemore AE (2001) Inactivation of two homologues of proteins presumed to be involved in the desiccation tolerance of plants sensitizes Deinococcus radiodurans R1 to desiccation. Cryobiology 43: 133-139
Bies-Etheve N, Gaubier-Comella P, Debures A, Lasserre E, Jobet E, Raynal M, Cooke R, Delseny M (2008) Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Mol Biol 67: 107-124
Boyer JS (1982) Plant Productivity and Environment. Science 218: 443-448
Bray EA (1993) Molecular Responses to Water Deficit. Plant Physiol 103: 1035-1040
Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pages M, Masmoudi K (2007) Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Rep 26: 2017-2026
C ND, Danyluk J, Wilson KE, Pocock T, Huner NP, Sarhan F (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins. Molecular characterization and functional analyses. Plant Physiol 129: 1368-1381
Chakrabortee S, Boschetti C, Walton LJ, Sarkar S, Rubinsztein DC, Tunnacliffe A (2007) Hydrophilic protein associated with desiccation tolerance exhibits broad protein stabilization function. Proc Natl Acad Sci USA 104: 18073-18078
Chang S, Puryear J, Cairney J (1993) A Simple and Efficient Method for Isolating RNA from Pine Trees. Plant Mol Biol Rep 11: 113-116
Chen H, Zhang J, Neff MM, Hong SW, Zhang H, Deng XW, Xiong L (2008) Integration of light and abscisic acid signaling during seed germination and early seedling development. Proc Natl Acad Sci USA 105: 4495-4500
Chung E, Kim SY, Yi SY, Choi D (2003) Capsicum annuum dehydrin, an osmotic-stress gene in hot pepper plants. Mol Cells 15: 327-332
Danyluk J, Perron A, Houde M, Limin A, Fowler B, Benhamou N, Sarhan F (1998) Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. Plant Cell 10: 623-638
de Dios Alvarado J, Villacis FE, Zamora GF (1983) Effect of the harvest season on the composition of raw and fermented cotyledons of 2 varieties of cacao and shell fractions. Arch Latinoam Nutr 33: 339-355
Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21: 3433-3434
Dosztanyi Z, Csizmok V, Tompa P, Simon I (2005) The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. J Mol Biol 347: 827-839
Dure L, 3rd (1993) A repeating 11-mer amino acid motif and plant desiccation. Plant J 3: 363-369
Galau GA, Hughes DW (1987) Coordinate accumulation of homeologous transcripts of seven cotton Lea gene families during embryogenesis and germination. Dev Biol 123: 213-221
Garay-Arroyo A, Colmenero-Flores JM, Garciarrubio A, Covarrubias AA (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J Biol Chem 275: 5668-5674
Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99: 15898-15903
Goyal K, Tisi L, Basran A, Browne J, Burnell A, Zurdo J, Tunnacliffe A (2003) Transition from natively unfolded to folded state induced by desiccation in an anhydrobiotic nematode protein. J Biol Chem 278: 12977-12984
Goyal K, Walton LJ, Tunnacliffe A (2005) LEA proteins prevent protein aggregation due to water stress. Biochem J 388: 151-157
Grelet J, Benamar A, Teyssier E, Avelange-Macherel MH, Grunwald D, Macherel D (2005) Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol 137: 157-167
Guo WJ, Ho TH (2008) An abscisic acid-induced protein, HVA22, inhibits gibberellin-mediated programmed cell death in cereal aleurone cells. Plant Physiol 147: 1710-1722
Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130: 639-648
Heyen BJ, Alsheikh MK, Smith EA, Torvik CF, Seals DF, Randall SK (2002) The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiol 130: 675-687
Hong B, Barg R, Ho TH (1992) Developmental and organ-specific expression of an ABA- and stress-induced protein in barley. Plant Mol Biol 18: 663-674
Honjoh K, Yoshimoto M, Joh T, Kajiwara T, Miyamoto T, Hatano S (1995) Isolation and characterization of hardening-induced proteins in Chlorella vulgaris C-27: identification of late embryogenesis abundant proteins. Plant Cell Physiol 36: 1421-1430
Houde M, Daniel C, Lachapelle M, Allard F, Laliberte S, Sarhan F (1995) Immunolocalization of freezing-tolerance-associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant J 8: 583-593
Hsieh TH, Lee JT, Charng YY, Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1show enhanced resistance to water deficit stress. Plant Physiol 130: 618-626
Huang B, Jin L, Liu J (2007) Molecular cloning and functional characterization of a DREB1/CBF-like gene (GhDREB1L) from cotton. Sci China C Life Sci 50: 7-14
Huang B, Liu JY (2006) Cloning and functional analysis of the novel gene GhDBP3 encoding a DRE-binding transcription factor from Gossypium hirsutum. Biochim Biophys Acta 1759: 263-269
Hughes DW, Galau GA (1991) Developmental and environmental induction of Lea and LeaA mRNAs and the postabscission program during embryo culture. Plant Cell 3: 605-618
Hundertmark M, Hincha DK (2008) LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9: 118
Imai R, Chang L, Ohta A, Bray EA, Takagi M (1996) A lea-class gene of tomato confers salt and freezing tolerance when expressed in Saccharomyces cerevisiae. Gene 170: 243-248
Ingram J, Bartels D (1996) The Molecular Basis of Dehydration Tolerance in Plants. Annu Rev Plant Physiol Plant Mol Biol 47: 377-403
Ismail AM, Hall AE, Close TJ (1999) Purification and partial characterization of a dehydrin involved in chilling tolerance during seedling emergence of cowpea. Plant Physiol 120: 237-244
Iturriaga G (2008) The LEA proteins and trehalose loving couple: a step forward in anhydrobiotic engineering. Biochem J 410: e1-2
Janik VM (2000) Food-related bray calls in wild bottlenose dolphins (Tursiops truncatus). Proc Biol Sci 267: 923-927
Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994) Characterization of two cDNAs (ERD10 and ERD14) corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol 35: 225-231
Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1994) Cloning of cDNAs for genes that are early-responsive to dehydration stress (ERDs) in Arabidopsis thaliana L.: identification of three ERDs as HSP cognate genes. Plant Mol Biol 25: 791-798
Kizis D, Pages M (2002) Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the drought-responsive element in an ABA-dependent pathway. Plant J 30: 679-689
Koag MC, Fenton RD, Wilkens S, Close TJ (2003) The binding of maize DHN1 to lipid vesicles. Gain of structure and lipid specificity. Plant Physiol 131: 309-316
Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147: 381-390
Lisse T, Bartels D, Kalbitzer HR, Jaenicke R (1996) The recombinant dehydrin-like desiccation stress protein from the resurrection plant Craterostigma plantagineum displays no defined three-dimensional structure in its native state. Biol Chem 377: 555-561
Liu JG, Zhang Z, Qin QL, Peng RH, Xiong AS, Chen JM, Xu F, Zhu H, Yao QH (2007) Isolated and characterization of a cDNA encoding ethylene-responsive element binding protein (EREBP)/AP2-type protein, RCBF2, in Oryza sativa L. Biontechnol Lett 29: 165-173
Lopez-Molina L, Mongrand S, Chua NH (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc Natl Acad Sci USA 98: 4782-4787
Machuka J, Bashiardes S, Ruben E, Spooner K, Cuming A, Knight C, Cove D (1999) Sequence analysis of expressed sequence tags from an ABA-treated cDNA library identifies stress response genes in the moss Physcomitrella patens. Plant Cell Physiol 40: 378-387
Manfre AJ, Lahatte GA, Climer CR, Marcotte WR, Jr. (2008) Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1. Plant Cell Physiol
Manfre AJ, Lanni LM, Marcotte WR, Jr. (2006) The Arabidopsis group 1 LATE EMBRYOGENESIS ABUNDANT protein ATEM6 is required for normal seed development. Plant Physiol 140: 140-149
March TJ, Able JA, Schultz CJ, Able AJ (2007) A novel late embryogenesis abundant protein and peroxidase associated with black point in barley grains. Proteomics 7: 3800-3808
Moons A, De Keyser A, Van Montagu M (1997) A group 3 LEA cDNA of rice, responsive to abscisic acid, but not to jasmonic acid, shows variety-specific differences in salt stress response. Gene 191: 197-204
Nakayama K, Okawa K, Kakizaki T, Inaba T (2008) Evaluation of the protective activities of a late embryogenesis abundant (LEA) related protein, Cor15am, during various stresses in vitro. Biosci Biotechnol Biochem 72: 1642-1645
Novillo F, Alonso JM, Ecker JR, Salinas J (2004) CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 101: 3985-3990
Novillo F, Medina J, Salinas J (2007) Arabidopsis CBF1 and CBF3 have a different function than CBF2 in cold acclimation and define different gene classes in the CBF regulon. Proc Natl Acad Sci USA 52: 21002-21007
Nylander M, Svensson J, Palva ET, Welin BV (2001) Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Mol Biol 45: 263-279
Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133: 1755-1767
Rinne PL, Kaikuranta PL, van der Plas LH, van der Schoot C (1999) Dehydrins in cold-acclimated apices of birch (Betula pubescens ehrh. ): production, localization and potential role in rescuing enzyme function during dehydration. Planta 209: 377-388
Roberts JK, DeSimone NA, Lingle WL, Dure L, 3rd (1993) Cellular Concentrations and Uniformity of Cell-Type Accumulation of Two Lea Proteins in Cotton Embryos. Plant Cell 5: 769-780
Rorat T (2006) Plant dehydrins--tissue location, structure and function. Cell Mol Biol Lett 11: 536-556
Shinozaki K, Yamaguchi-Shinozaki K (1996) Molecular responses to drought and cold stress. Curr Opin Biotechnol 7: 161-167
Solomon A, Salomon R, Paperna I, Glazer I (2000) Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat-stable protein. Parasitology 121 ( Pt 4): 409-416
Soulages JL, Kim K, Arrese EL, Walters C, Cushman JC (2003) Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure. Plant Physiol 131: 963-975
Soulages JL, Kim K, Walters C, Cushman JC (2002) Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean. Plant Physiol 128: 822-832
Stacy RA, Aalen RB (1998) Identification of sequence homology between the internal hydrophilic repeated motifs of group 1 late-embryogenesis-abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis. Planta 206: 476-478
Stockinger EJ, Gilmour SJ, Thomashow MF (1996) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription
in response to low temperature and water deficit. Proc Natl Acad Sci USA 94: 1035-1040
Sutton F, Ding X, Kenefick DG (1992) Group 3 LEA Gene HVA1 Regulation by Cold Acclimation and Deacclimation in Two Barley Cultivars with Varying Freeze Resistance. Plant Physiol 99: 338-340
Takumi S, Shimamura C, Kobayashi F (2008) Increased freezing tolerance through up-regulation of downstream genes via the wheat CBF gene in transgenic tobacco. Plant Physiol Biochem 46: 205-211
Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 10: 148-154
Tolleter D, Jaquinod M, Mangavel C, Passirani C, Saulnier P, Manon S, Teyssier E, Payet N, Avelange-Macherel MH, Macherel D (2007) Structure and function of a mitochondrial late embryogenesis abundant protein are revealed by desiccation. Plant Cell 19: 1580-1589
Tompa P (2002) Intrinsically unstructured proteins. Trends Biochem Sci 27: 527-533
Tompa P, Csermely P (2004) The role of structural disorder in the function of RNA and protein chaperones. FASEB J 18: 1169-1175
Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94: 791-812
Vinocur B, Altman A (2005) Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Curr Opin Biotechnol 16: 123-132
Welin BV, Olson A, Nylander M, Palva ET (1994) Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol Biol 26: 131-144
Wise MJ (2002) The POPPs: clustering and searching using peptide probability profiles. Bioinformatics 18 Suppl 1: S38-45
Wise MJ (2003) LEAping to conclusions: a computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics 4: 52
Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9: 13-17
Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115: 35-46
Xu D, Duan X, Wang B, Hong B, Ho T, Wu R (1996) Expression of a Late Embryogenesis Abundant Protein Gene, HVA1, from Barley Confers Tolerance to Water Deficit and Salt Stress in Transgenic Rice. Plant Physiol 110: 249-257
Xue GP, Loveridge CW (2004) HvDRF1 is involved in abscisic acid-mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT-rich element. Plant J 37: 326-339
Yang P, Li X, Wang X, Chen H, Chen F, Shen S (2007) Proteomic analysis of rice (Oryza sativa) seeds during germination. Proteomics 7: 3358-3368
指導教授 葉靖輝(Ching-Hui Yeh) 審核日期 2009-2-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡