博碩士論文 952401001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.236.190.216
姓名 謝博文(Po-Wen Hsieh)  查詢紙本館藏   畢業系所 數學系
論文名稱 邊界層和內部層問題的穩定化有限元素法
(Stabilized finite element methods for solving boundary and interior layer problems)
相關論文
★ 遲滯型細胞神經網路似駝峰行進波之研究★ 穩態不可壓縮那維爾-史托克問題的最小平方有限元素法之片狀線性數值解
★ Global Exponential Stability of Modified RTD-based Two-Neuron Networks with Discrete Time Delays★ 二維穩態不可壓縮磁流體問題的迭代最小平方有限元素法之數值計算
★ 兩種迭代最小平方有限元素法求解不可壓縮那維爾-史托克方程組之研究★ 非線性耦合動力網路的同步現象分析
★ 數種不連續有限元素法求解對流佔優問題之數值研究★ 某個流固耦合問題的有限元素法數值模擬
★ 高階投影法求解那維爾-史托克方程組★ 非靜態反應-對流-擴散方程的高階緊緻有限差分解法
★ 二維非線性淺水波方程的Lax-Wendroff差分數值解★ Numerical Computation of a Direct-Forcing Immersed Boundary Method for Simulating the Interaction of Fluid with Moving Solid Objects
★ On Two Immersed Boundary Methods for Simulating the Dynamics of Fluid-Structure Interaction Problems★ 生成對抗網路在影像填補的應用
★ 非穩態複雜流體的人造壓縮性直接施力沉浸邊界法數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文主要發展穩定化的有限元素法求解邊界層和內部層問題,我們提出了兩種新型的穩定化方法。第一種方法是求解對流佔優對流-擴散問題的泡狀函數穩定化最小平方有限元素法。首先,依據最小平方有限元素法的概念引入原未知變數的梯度向量為新增變數,將原始二階偏微分方程式轉換成一階偏微分方程組,接著針對每一個未知變數,利用類似無殘餘泡狀函數法的方式將最小平方有限元素法的線性基底加入具穩定作用的泡狀函數。其中泡狀函數在每一個單元上滿足某個二階偏微分方程式及零單元邊界值條件,實際運算時則採取某種加勒金/最小平方型穩定化方法求取此無殘餘泡狀函數之近似解。在這樣的策略下不僅可以保有最小平方有限元素法的優勢(所形成的矩陣具對稱正定性),亦具有無殘餘泡狀函數法的特徵(無需再選擇穩定化參數)。我們進行一系列的數值模擬實證泡狀函數穩定化最小平方有限元素法的高度效率,同時比較了該方法和原始最小平方有限元素法的精確度和計算成本。我們發現在對流佔優的情況下,泡狀函數穩定化最小平方有限元素法的精確度和穩定性都比原始最小平方有限元素法高,即使原始最小平方有限元素法使用較為細密的網格或較為高階的基底都無法達到相同的效果。最後,我們成功地將這種新型的泡狀函數穩定化最小平方有限元素法應用到某個源自靜態不可壓縮管狀磁流體的對流佔優對流-擴散方程組上。
第二種穩定化方法是求解反應-對流-擴散問題的新型加勒金穩定化有限元素法,其中該反應-對流-擴散問題具有一個極小擴散係數與一個極大反應係數。我們明確定義其穩定化參數,經由一個特殊內插技巧推導出 與 模下的誤差估計,並建立該估計與擴散係數、對流場大小、反應係數和網格參數之間的明確關聯。在數值計算上,我們將此新方法與文獻上的兩種穩定化有限元素法比較,結果顯示在反應-對流佔優的情況下,此新型穩定化方法具有高精確度與高穩定性。
摘要(英) This thesis is devoted to developing stabilized finite element methods (FEMs) for solving boundary and interior layer problems. We propose and analyze two new stabilized FEMs. The first one is the bubble-stabilized least-squares finite element method (LSFEM) which is applied to solve scalar convection-dominated convection-diffusion problems. We first convert the second-order convection-diffusion problem into a first-order system formulation by introducing the gradient of solution as a new unknown. Then the LSFEM using continuous piecewise linear elements enriched with residual-free bubbles for all unknowns is applied to solve the first-order mixed problem. The residual-free bubble functions are assumed to strongly satisfy the associated homogeneous second-order convection-diffusion equations in the interior of each element, up to the contribution of the linear part, and vanish on the element boundary. To implement this two-level least-squares approach, a stabilized method of Galerkin/least-squares type is used to approximate the residual-free bubble functions. This bubble-stabilized LSFEM not only inherits the advantages of the primitive LSFEM, such as the resulting linear system being symmetric and positive definite, but also exhibits the characteristics of the residual-free bubble method without involving any stabilization parameters. Several numerical experiments are given to demonstrate the effectiveness of the proposed bubble-stabilized LSFEM. The accuracy and computational cost of this method are also compared with those of the primitive LSFEM. We find that for a small diffusivity, the bubble-stabilized LSFEM is much better able to capture the nature of layer structure in the solution than the primitive LSFEM, even if the primitive LSFEM uses a very fine mesh or higher-order elements. In other words, the bubble-stabilized LSFEM provides a significant mprovement, with a lower computational cost, over the primitive LSFEM for solving convection-dominated problems. Finally, we extend this approach to a coupled system of convection-diffusion equations arising from the steady incompressible magnetohydrodynamic duct flow problem with a transverse magnetic field at high Hartmann numbers.
The second method that we propose in this thesis is a new stabilized FEM in the Galerkin formulation. We analyze the method using continuous piecewise linear elements for solving 2D reaction-convection-diffusion equations. The equation under consideration is reaction-convection-dominated, involving a small diffusivity and a large reaction coefficient. In addition to giving error estimates of the approximations in $L^2$ and $H^1$ norms, we explicitly establish the dependence of error bounds on the diffusivity, the module of convection field, the reaction coefficient and the mesh size. Several numerical examples exhibiting boundary layers are given to illustrate the high accuracy and stability of the newly proposed stabilized FEM. The results obtained are also compared with those of existing stabilized FEMs.
關鍵字(中) ★ 最小平方有限元素法
★ 無殘餘泡狀函數
★ 穩定化有限元素法
★ 有限元素法
★ 邊界層和內部層
★ 磁流體方程組
★ 反應-對流-擴散方程
★ 對流-擴散方程
關鍵字(英) ★ least-squares finite element methods
★ residual-free bubbles
★ stabilized finite element methods
★ finite element methods
★ boundary and interior layers
★ magnetohydrodynamic equations
★ reaction-convection-diffusion equations
★ convection-diffusion equations
論文目次 1 Introduction ..........1
2 Scalar Convection-Diffusion Equations ..........5
2.1 Introduction ..........5
2.2 The first-order system formulation and the primitive LSFEM ..........7
2.3 A stabilized LSFEM with residual-free bubbles ..........10
2.4 Numerical experiments ..........13
2.5 Summary and conclusions ..........28
3 A Coupled System of Convection-Diffusion Equations 32
3.1 Introduction ..........32
3.2 Problem formulation ..........33
3.3 The first-order system formulation ..........35
3.4 The primitive LSFEM ..........36
3.5 A bubble-stabilized LSFEM ..........40
3.6 Numerical experiments .......... 44
3.7 Summary and conclusions ..........48
4 Scalar Reaction-Convection-Diffusion Equations ..........60
4.1 Introduction ..........60
4.2 The new stabilized FEM ..........62
4.3 Error estimates of the new stabilized FEM ..........66
4.4 Numerical experiments ..........68
4.5 Summary and conclusions ..........80
參考文獻 [1] K. E. Barrett, Duct flow with a transverse magnetic field at high Hartmann numbers, Int.
J. Numer. Meth. Engrg., 50 (2001), pp. 1893-1906.
[2] P. B. Bochev and M. D. Gunzburger, Analysis of least-squares finite element methods for
the Stokes equations, Math. Comp., 63 (1994), pp 479-506.
[3] P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM
Rev., 40 (1998), pp 789-837.
[4] P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods, Appl. Math.
Sci. 166, Springer, New York, 2009.
[5] P. B. Bochev, M. D. Gunzburger, and R. B. Lehoucq, On stabilized finite element methods
for the Stokes problem in the small time step limit, Internat. J. Numer. Methods Fluids, 53
(2007), pp. 573-597.
[6] C. Bozkayaa and M. Tezer-Sezgin, Fundamental solution for coupled magnetohydrodynamic
flow equations, J. Comput. Appl. Math., 203 (2007), pp. 125-144.
[7] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
Springer-Verlag, New York, 1994.
[8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New
York, 1991.
[9] F. Brezzi, L. P. Franca, A. Russo, Further considerations on residual-free bubbles for
advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 25-
33.
[10] F. Brezzi, T. J. R. Hughes, L. D. Marini, A. Russo, and E. S¨uli, A priori error analysis of
residual-free bubbles for advection-diffusion problems, SIAM J. Numer. Anal., 36 (1999), pp.
1933-1948.
[11] F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems, Math. Models
Methods Appl. Sci., 4 (1994), pp. 571-587.
[12] A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for
convective dominated flows with a particular emphasis on the incompressible Navier-Stokes
equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), pp. 199-259.
[13] Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick, First-order system least squares
for second-order partial differential equations: Part I, SIAM J. Numer. Anal., 31 (1994), pp.
1785-1799.
[14] Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for secondorder
partial differential equations: Part II, SIAM J. Numer. Anal., 34 (1997), pp. 425-454.
[15] A. Cangiani and E. S¨uli, Enhanced RFB method, Numer. Math., 101 (2005), pp. 273-308.
[16] C. L. Chang, Finite element approximation for grad-div type systems in the plane, SIAM J.
Numer. Anal., 29 (1992), pp. 452-461.
[17] C. L. Chang and B.-N. Jiang, An error analysis of least-squares finite element method of
velocity-pressure-vorticity formulation for Stokes problem, Comput. Methods Appl. Mech.
Engrg., 84 (1990), pp. 247-255.
[18] C. L. Chang and S.-Y. Yang, Analysis of the L2 least-squares finite element method for the
velocity-vorticity-pressure Stokes equations with velocity boundary conditions, Appl. Math.
Comput., 130 (2002), pp. 121-144.
[19] C. L. Chang, S.-Y. Yang, and C.-H. Hsu, A least-squares finite element method for incompressible
flow in stress-velocity-pressure version, Comput. Methods Appl. Mech. Engrg., 128
(1995), pp. 1-9.
[20] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing
Company, Amsterdam, 1987.
[21] J. M. Deang and M. D. Gunzburger, Issues related to least-squares finite element methods
for the Stokes equations, SIAM J. Sci. comput., 20 (1998), pp. 878-906.
[22] H.-Y. Duan, A new stabilized finite element method for solving the advection-diffusion equations,
J. Comput. Math., 20 (2002), pp. 57-64.
[23] H.-Y. Duan, P.-W. Hsieh, R. C. E. Tan, and S.-Y. Yang, Analysis of a new stabilized finite
element method for the reaction-convection-diffusion equations with a large reaction
coefficient, submitted for publication, 2011.
[24] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers:
with Applications in Incompressible Fluid Dynamics, Oxford University Press, New York,
2005.
[25] J. M. Fiard, T. A. Manteuffel, and S. F. McCormick, First-order system least squares
(FOSLS) for convection-diffusion problems: Numerical results, SIAM J. Sci. Comput., 19
(1998), pp. 1958-1979.
[26] L. P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods,
Comput. Methods Appl. Mech. Engrg., 123 (1995), pp. 299-308.
[27] L. P. Franca and S. L. Frey, Stabilized finite element methods: II. the incompressible Navier-
Stokes equations, Comput. Methods Appl. Mech. Engrg., 99 (1992), pp. 209-233.
[28] L. P. Franca, S. L. Frey, and T. J. R. Hughes, Stabilized finite element methods: I. application
to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 95 (1992), pp. 253-
276.
[29] L. P. Franca, G. Hauke, and A. Masud, Revisiting stabilized finite element methods for the
advective-diffusive equation, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 1560-
1572.
[30] L. P. Franca and F.-N. Hwang, Refining the submesh strategy in the two-level finite element
method: application to the advection-diffusion equation, Internat. J. Numer. Methods Fluids,
39 (2002), pp. 161-187.
[31] L. P. Franca and A. P. Macedo, A two-level finite element method and its application to the
Helmholtz equation, Internat. J. Numer. Methods Engrg., 43 (1998), pp. 23-32.
[32] L. P. Franca, A. L. Madureira, and F. Valentin, Towards multiscale functions: enriching
finite element spaces with local but not bubble-like functions, Comput. Methods Appl. Mech.
Engrg., 194 (2005), pp. 3006-3021.
[33] L. P. Franca, A. Nesliturk, and M. Stynes, On the stability of residual-free bubbles for
convection-diffusion problems and their approximation by a two-level finite element method,
Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 35-49.
[34] L. P. Franca, J. V. A. Ramalho, and F. Valentin, Multiscale and residual-free bubble functions
for reaction-advection-diffusion problems, Internat. J. Multiscale Comput. Engrg., 3 (2005),
pp. 297-312.
[35] L. P. Franca and A. Russo, Deriving upwinding, mass lumping and selective reduced integration
by residual-free bubbles, Appl. Math. Lett., 9 (1996), pp. 83-88.
[36] L. P. Franca and F. Valentin, On an improved unusual stabilized finite element method for
the advective-reactive-diffusive equation , Comput. Methods Appl. Mech. Engrg., 190 (2000),
pp. 1785-1800.
[37] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory
and Algorithms, Springer-Verlag, New York, 1986.
[38] I. Harari, Stability of semidiscrete formulations for parabolic problems at small time steps,
Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 1491-1516.
[39] I. Harari and T. J. R. Hughes, What are C and h?: inequalities for the analysis and design
of finite element methods, Comput. Methods Appl. Mech. Engrg., 97 (1992), pp. 157-192.
[40] T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite
materials and porous media, J. Comput. Phys., 134 (1997), pp. 169-189.
[41] P.-W. Hsieh and S.-Y. Yang, On efficient least-squares finite element methods for convectiondominated
problems, Comput. Methods Appl. Mech. Engrg., 199 (2009), pp. 183-196.
[42] P.-W. Hsieh and S.-Y. Yang, A bubble-stabilized least-squares finite element method for
steady MHD duct flow problems at high Hartmann numbers, J. Comput. Phys., 228 (2009),
pp. 8301-8320.
[43] P.-W. Hsieh and S.-Y. Yang, A novel least-squares finite element method enriched with
residual-free bubbles for solving convection-dominated problems, SIAM J. Sci. Comput., 32
(2010), pp. 2047-2073.
[44] T. J. R. Hughes, L. P. Franca, and G. M. Hulbert, A new finite element formulation for computational
fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive
equations, Comput. Methods Appl. Mech. Engrg., 73 (1989), pp. 173-189.
[45] B.-N. Jiang, The Least-Squares Finite Element Method, Springer-Verlag, Berlin, 1998.
[46] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element
Method, Cambridge University Press, Cambridge, UK, 1987.
[47] R. D. Lazarov, L. Tobiska, and P. S. Vassilevski, Streamline diffusion least-squares mixed
finite element methods for convection-diffusion problems, East-West J. Numer. Math., 5
(1997), pp. 249-264.
[48] R. D. Lazarov and P. S. Vassilevski, Least-squares streamline diffusion finite element approximations
to singularly perturbed convection-diffusion problems, in Analytical and Numerical
Methods for Singularly Perturbed Problems, (L. G. Vulkov, J. J. H. Miller, and G. I. Shishkin,
eds.), Nova Science Publishers, Hauppauge, NY, 2000, pp. 83-94.
[49] K. W. Morton, Numerical Solution of Convection-Diffusion Problems, Chapman & Hall,
London, UK, 1996.
[50] A. I. Nesliturk and M. Tezer-Sezgin, The finite element method for MHD flow at high Hartmann
numbers, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 1201-1224.
[51] A. I. Nesliturk and M. Tezer-Sezgin, Finite element method solution of electrically driven
magnetohydrodynamic flow, J. Comp. Appl. Math., 192 (2006), pp. 339-352.
[52] A. I. Pehlivanov, G. F. Carey, and R. D. Lazarov, Least-squares mixed finite elements for
second-order elliptic problems, SIAM J. Numer. Anal., 31 (1994), pp. 1368-1377.
[53] H.-G. Roos, M. Stynes, and L. Tobiska, Numerical Methods for Singularly Perturbed Differential
Equations, Springer, New York, 1996.
[54] R. Scandiuzzi and B. A. Schrefler, FEM in steady MHD duct flow problems, Internat. J.
Numer. Methods Engrg., 30 (1990), pp. 647-659.
[55] B. Singh and J. Lal, FEM in MHD channel flow problems, Internat. J. Numer. Methods
Engrg., 18 (1982), pp. 1104-1111.
[56] B. Singh and J. Lal, FEM for unsteady MHD flow through pipes with arbitrary wall conductivity,
Internat. J. Numer. Methods Fluids, 4 (1984), pp. 291-302.
[57] M. Stynes, Steady-state convection-diffusion problems, Acta Numerica, 2005, pp. 445-508.
指導教授 楊肅煜(Suh-Yuh Yang) 審核日期 2011-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明