博碩士論文 952401003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:34.232.62.209
姓名 潘君豪(Chun-hao Pan)  查詢紙本館藏   畢業系所 數學系
論文名稱 由伯氏多項式對形狀限制的回歸函數定義最大概似估計量
(Maximum likelihood estimation for a shape-restricted regression model by sieve of Bernstein polynomials)
相關論文
★ 用Pfam-A建議BLAST之計分表(Scoring Matrix)與空格罰分(Gap Penality)★ Motif長度未知之貝氏多重序列比對方法
★ 現狀家庭數據在相關伽瑪致病傾向模型之無母數估計★ 伯氏先驗分布在貝氏存活分析 與貝氏遞升迴歸的應用
★ 關於時間連續的馬爾可夫過程之離散骨架探討★ 利用兄弟數據之多點遺傳連鎖分析方法
★ 半母數混合模型估計的一致性及其應用★ 具跳躍亞式選擇權及相關財務問題之研究
★ 隨機右設限數據之風險率的貝氏估計方法★ 利用Bernstein多項式來研究二元迴歸
★ 凱利準則及其在賭博上的應用★ Studies on Fractional Brownian Motion: Its Representations and Properties
★ 從傳染病家庭資料估計與時間相關的傳佈參數★ 連續型變數之記數過程在傳染病資料上之應用
★ 數據依賴誤差之階梯函數迴歸的貝氏方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們藉由伯氏多項式的次方和係數來對一個回歸函數定義最大概似估計量。如果我們已知回歸函數滿足某些形狀上的限制,例如單調性或凸性,則我們就可以透過對伯氏多項式的係數增加一樣的限制使得估計量達到相同的形狀限制。對於此類的最大概似估計量,當回歸函數連續時可建立出此估計量的收斂性;當回歸函數的導函數滿足利普希茨連續性時則可建立出此估計量的收斂速度。也是在一樣的條件下,估計量的積分也會弱收斂到回歸函數的積分。模擬分析展現出此方法在數值上的結果,除了對回歸函數的積分有良好的信賴區間的估計之外,此法亦表現得比貝氏方法及密度-回歸法更好(見Chang et al.(2007))。
摘要(英) We consider maximum likelihood estimation (MLE) of a regression function using sieves defined by Bernstein polynomials, in terms of their order and coefficients. In case, that we know the regression function satisfies certain shape-restriction like monotonicity or convexity, we can impose corresponding restriction through the coefficients of the Bernstein polynomials in the sieves so that the estimate also satisfies the desired shape-restriction. For sieve MLE of this type, we establish its consistency when the regression function is continuous and its rate of convergence when its derivative satisfies Lipschitz condition. Under the same condition, we also show that the integral of the estimate converges weakly to that of the regression function at rate of root n. Simulation studies are presented to evaluate its numerical performance. In addition to excellent confidence interval estimates of area under the regression function, sieve MLE performs better than the Bayesian method based on Bernstein polynomials and density-regression method, reported in Chang et al. (2007).
關鍵字(中) 關鍵字(英) ★ Bernstein polynomials
★ Area under the curve
★ rate of convergence
★ shape -restricted regression
★ sieve maximum likelihood estimate.
★ empirical process
論文目次 中文提要……………………………………………………………………………….i
英文提要………………………………………………………………………………ii
誌謝…………………………………………………………………………………...iii
Contents……………………………………………………………………………...iv
List of figures……………………………...……………………………....………….v
List of tables…………………………………………………………………….……vi
Explanation of symbols..............................................................................................vii
1. Introduction.……………………………………………………………………….1
1.1. Motivations…………………………………………………..…………………..1
1.2. Main results………………………………………………..……………………..3
2. Consistency. …………………………………………………..……………………8
3. Rate of convergence. ……………………………………………………………..16
4. Normality with known .………………………………...……………………20
5. Normality with unknown .…………………………………………………...26
6. Shape-restriction regression and simulation studies.…...……………....……...34
6.1 Area under the regression function.………………………………….....……...35
6.2 Performance comparison.…………………………………………............……38
6.3 Algorithm.……………………..……………………………………….......……39
7. Discussion.…………………………………………………...……………………41
References. …………………………………………………...………………....…..43
Appendix. ……………………………………………………...……………………45
Appendix 1. ………………………………….………………...………………....…45
Appendix 2. ……………………………………….…………………….......………45
Appendix 3. ………………………………………………….......................……….47
Appendix 4. …………………………………………………...……………....…….52
參考文獻 [1] Altshuler, B (1981). Modeling of dose-response relationships. Scandinavian Journal of statisticsEnviron. Healt Perspect. 42 23-27.
[2] Birke, M. and Dette, H. (2007). Estimating a convex function in nonparametric regression. Scandinavian Journal of statistics. 34 384-404.
[3] Chang, I. S., Chien, L. C., Hsiung, C. A., Wen, C. C. and Wu, Y. J. (2007). Shape restricted regression with random Bernstein polynomials. Complex Datasets and Inverse Problems: Tomography, Networks and Beyond. 54 187–202.
[4] Chang, I. S., Hsiung, C. A., Wu, Y. J. and Yang, C. C. (2005). Bayesian survival analysis using Bernstein polynomials. Scand. J. Statist. 32 447–466.
[5] Chak, P. M., Madras, N. and Smith, B. (2005). Semi-nonparametric estimation with Bernstein polynomials. Economics Letters. 89 153-156.
[6] Chien, L. C., Chang, I. S., Jiang, S. S., Gupta, P. K., Wen, C. C., Wu, Y. J. and Hsiung, C. A. (2009). Profiling time course expression of gene-virus: An illustration of Bayesian inference under shape restriction. Annals of Applied Statistics. 3 1542-1565.
[7] Curtis, S. M. and Ghosh, S. K. (2011). A variable selection approach to monotonic regression with Bernstein polynomials. Journal of Applied Statistics. 38(5) 961-976.
[8] Dette, H., Neumeyer, N. and Pilz, K. F. (2006). A simple nonparametric estimator of a monotone regression function. Bernoulli 12 469–490.
[9] Dette, H. and Pilz, K. F. (2006). A comparative study of monotone nonparametric kernel estimates. J. Stat. Comput. Simul. 76 41–56.
[10] Ganllant, A. R. and Golub, G. H. (1984). Imposing curvature restrictions on flexible functional forms. Journal of Econometrics. 26 295-322.
[11] Hall, P. and Huang, L. S. (2001). Nonparametric kernel regression subject to monotonicity constraints. Ann. Statist. 29 624–647.
[12] He, X. and Shi, P. (1998). Monotone B-spline smoothing. Journal of the American Statistical Association. 93(442) 643-650.
[13] Hildreth, C. (1954). Point estimate of ordinates of concave functions. Journal of the American Statistical Association. 49 598–619.
[14] Kosorok, Michail R. (2008). Introduce Empirical Processes and Semiparametric Inference. Springer.
[15] Lorentz, G. G. (1986). Bernstein Polynomials. Chelsea, New York.
[16] Mammen, E., Marron, J. S., Turlach, B. A. and Wand, M. P. (2001). A general projection framework for constrained smoothing. Statistical Science. 16 232–248.
[17] Meyer, M. C. (2008). Inference using shape-restricted regression splines. The Annals of Applied Statistics. 2(3) 1013-1033.
[18] Osman, M and Ghosh, S. K. (2012). Nonparametric regression models for right-censored data using Bernstein polynomials. Computational Statistics and Data Analysis. 56(3) 559-573.
[19] Petrone, S. (1999). Random Bernstein polynomials. Scand. J. Statist. 26 373–393.
[20] Petrone, S. and Wasserman, L. (2002). Consistency of Bernstein polynomial posteriors. J. R. Stat. Soc. Ser. B 64 79–100.
[21] Ramsay, J. O. (1988). Monotone regression splines in action (with discussion). Statistical Science. 3 425-461.
[22] Rudin, W. (1976). Principles of Mathematical Analysis, 3rd ed. McGraw-Hill, New York.
[23] Shen, X. (1997). On methods of sieves and penalization. Ann. Statist. 25 2555-2591.
[24] Terrell, D (1996). Incorporating monotonicity and concavity conditions in flexible functional forms. Journal of Applied Econometrics. 11 179-914.
[25] Van Der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Process. Springer, New York.
[26] Van Der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press.
[27] Wang, J. and Ghosh, S.K. (2012). Shape restricted nonparametric regression with Bernstein polynomials. Computational Statistics and Data Analysis. 56(9) 2729-2741.
[28] Wang, L., Li, H. and Huang, J. Z. (2008). Variable selection in nonparametric varying-coefficient models for analysis of repeated measurements. Journal of the American Statistical Association. 103(484) 1556-1569.
[29] Wong, W. H. and Shen, X. (1994). Convergence rate of sieve estimates. Ann.Statist. 22 580-615.
[30] Wong, W. H. and Shen, X. (1995). Probability inequalities for likelihood ratios and convergence rates of sieve MLEs. Ann.Statist. 23 339-362.
[31] Zeise, L., Wilson, R. and Crouch, E. A. C. (1986). Dose-response relationships for carcinogens: A review. Environ. Health Perspect. 73 259-308.
指導教授 趙一峰、張憶壽
(I-feng Chao、I-shou Chang)
審核日期 2012-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明