博碩士論文 952402006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.118.12.101
姓名 洪德昇(Te-sheng Hung)  查詢紙本館藏   畢業系所 物理學系
論文名稱 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
(Construction of a 100-TW laser system and application to a structured plasma waveguide)
相關論文
★ GW準粒子於Mn3O4和GaN的激發態性質計算★ 混合物種與低溫冷凍原子團簇噴流的發展
★ 利用X光光電子能譜儀進行氬原子團簇游離能的研究★ 發展利用對撞光學拍頻脈衝波產生准相位匹配高階諧波
★ X光探測紅外線激發氬原子團簇產生奈米電漿球振盪現象之相關研究★ 以雷射脈衝對磁性薄膜進行超快磁轉化及其動態時間解析
★ 以脈衝雷射沈積製造FeBO3薄膜★ 共焦拉曼與螢光顯微鏡之發展及其在材料診斷上之應用
★ 在Pt(111)表面上研究雷射輔助光電效應★ Preliminary Experiment for the Control of Cluster Vibration
★ 以光激發黑色素來清除細胞環境中之活性氧之探討★ 釔鋇銅氧高溫超導薄膜的成長及診斷
★ 高階諧波產生極紫外光的脈衝時寬量測★ 發展在電漿波導式雷射電漿波電子加速器中誘發電子注入與X 光產生之技術
★ 建造準相位匹配高階諧波產生的拍波脈衝串★ 莫斯堡光譜儀的建造以及其應用到FeCO3薄膜的診斷
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在近二十年中,高功率飛秒雷射的發展帶動了許多科學領域的突破,如雷射電漿電子加速器、質子加速器、超短X光脈衝產生等領域。為了產生能量更高,強度更強的脈衝粒子及光子源,除了追求更高的尖峰功率之外,另一種方式則是透過多道或是不同波長的光束對電漿結構做細微調製。在中央大學,我們建造了一套多功能、雙波長的一百兆瓦鈦藍寶石雷射系統。它可以同時提供三道重複率為10 Hz的同步光束,包含二道中心波長約在810 nm及一道利用超連續光譜產生,中心波長可調(870-920 nm)的光束。此雷射的脈衝對比度最高可達2*10^9,並具有良好的時空波形與相位,這些規格使得本雷射系統有能力進行尖端強場物理的研究。除此之外,此雷射系統也用於結構化電漿波導的研究。利用了一道經過液晶空間波形調製器調變後的雷射光做為加工脈衝,我們成功地製造出不同縱向結構的電漿波導,例如最短週期為200 µm的週期性結構,以及最短坡度為100 µm的密度斜坡結構。利用此技術及其可程式化的優勢,將大幅地提升桌上型雷射電漿光子及粒子源的性能。
摘要(英) In the past two decades, the advance of high-power laser technology has led to many scientific breakthroughs such as in laser wakefield electron accelerators, proton accelerators and ultrafast x-ray pulse generation. With the growth of the experimental complexity of laser-plasma interaction, versatile laser system with multiple beams or colors are required. In this thesis, I report the construction of a versatile 100-TW Ti:sapphire laser system, which provides three synchronized parallel beamlines running at 10-Hz repetition rate. The first beamline provides 3.3-J infrared pulses with 30-fs duration and 810-nm central wavelength, corresponding to a peak power of 110 TW. The temporal contrast reaches 4*10^{-10} at − 100-ps timescale. The second beamline provides 450-mJ infrared pulses with 34-fs duration and 805-nm central wavelength, corresponding to a peak power of 13 TW. The third beamline provides 200-mJ infrared pulses with 38-fs duration and tunable wavelength from 870 nm to 920 nm. Its peak power reaches 5.3 TW. All three beams can be focused down to M^2 < 1.3, with more than 72\% enclosed energy in the focal spots. Precise control and manipulation of laser-plasma experiment can be achieved by using such kind of laser with independently-controlled pulse energies, durations, central wavelengths, and relative delays. A structured plasma waveguide is also investigated by utilizing the laser system. Programmable fabrication of longitudinal spatial structures in an optically preformed plasma waveguide was achieved, by using laser machining with a liquid-crystal spatial light modulator. Fabrication of periodic structures with a minimal period of 200 µm and density-ramp structures with a minimal slope length of 100 µm was attained. The technique is useful for the optimization of various laser-plasma-based photon and particle sources.
關鍵字(中) ★ 高功率雷射
★ 啾頻放大
★ 超連續光譜產生
★ 電漿波導
★ 空間波形調製器
關鍵字(英) ★ high-power laser
★ chirped-pulse amplification
★ supercon- tinuum generation
★ plasma waveguide
★ lspatial light modulator
論文目次 1 Background of High Power Laser Systems 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Femtosecond pulse generation . . . . . . . . . . . . . . 3
1.2.1 broadband gain media . . . . . . . . . . . . . . 3
1.2.2 pulse compression mechanisms . . . . . . . . . 4
1.2.3 dispersion compensation . . . . . . . . . . . . 8
1.3 chirped pulse amplifi cation . . . . . . . . . . . . . . . 9
1.3.1 General Principles . . . . . . . . . . . . . . . . 9
1.3.2 Stretcher and Compressor . . . . . . . . . . . . 12
1.3.3 Gain Narrowing . . . . . . . . . . . . . . . . . . 13
1.3.4 Dynamic Gain Saturation . . . . . . . . . . . . 15
1.3.5 Self-Induced Nonlinear Aberration . . . . . . . 15
2 Building a versatile 110-TW multiple-beam laser system with a 5-TW wavelength-tunable auxiliary beam 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 System con figuration . . . . . . . . . . . . . . . . . . . 20
2.3 Specifications and measurements . . . . . . . . . . . . 23
2.3.1 Temporal specifications of the 110-TW and the
13-TW beamlines . . . . . . . . . . . . . . . . . 24
2.3.2 Spatial specifications of the 110-TW and 13-TW
beamlines . . . . . . . . . . . . . . . . . . . . . 27
2.3.3 The spatiotemporal qualities of the auxiliary beam-
line . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.4 Energy stability . . . . . . . . . . . . . . . . . . 34
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Programmably structured plasma waveguide for development of table-top photon and particle sources 39
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Plasma waveguide . . . . . . . . . . . . . . . . . . . . . 40
3.2.1 Methods for producing plasma waveguide . . . . 42
3.2.2 Guiding conditions for plasma waveguide . . . . 46
3.2.3 Axicon-ignitor-Heater Scheme . . . . . . . . . . 48
3.3 Programmably structured plasma waveguide . . . . . 52
3.3.1 Experimental method . . . . . . . . . . . . . . 52
3.3.2 Experimental result . . . . . . . . . . . . . . . 55
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 63

4 Induction of electron injection and betatron oscillation
in a plasma-waveguide-based laser wakefield accelerator by modification of waveguide structure 65
4.1 Induction of electron injection in a three-dimensionally
structured plasma waveguide . . . . . . . . . . . . . . . 65
4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . 65
4.1.2 Experimental arrangement . . . . . . . . . . . . 66
4.1.3 Experimental results and discussion . . . . . . . 69
4.2 Enhancement of betatron oscillation of electron in a
three-dimensionally structured plasma waveguide . . . 76
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . 76
4.2.2 Experimental results and discussion . . . . . . . 77

Bibliography 82
參考文獻 [1] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Comm. 56, 219–221 (1985).

[2] P. Maine, D. Strickland, P. Bado, M. Pessot, and G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).

[3] A. E. Siegman, Lasers (University Science Books, 55D Gate Five
Road, Sausalito, CA 94965, USA, 1986).


[4] D. Du, J. Squier, S. Kane, G. Korn, G. Mourou, C. Bogusch, and C. T. Cotton, “Terawatt ti:sapphire laser with a spheri- cal reflective-optic pulse expander,” Opt. Lett. 20, 2114–2116 (1995).

[5] P. F. Moulton, “Spectroscopic and laser characteristics of ti:al2o3,” J. Opt. Soc. Am. B 3, 125–133 (1986).

[6] M. D. Perry, T. Ditmire, and B. C. Stuart, “Self-phase modu- lation in chirped-pulse amplification,” Opt. Lett. 19, 2149–2151 (1994).

[7] O. A. Konoplev and D. D. Meyerhofer, “Cancellation of -integral accumulation for cpa lasers,” IEEE J. Sel. Top. Quantum Elec- tron. 4, 459–469 (1998).

[8] B. E. Lemoff, C. P. J. Barty, and S. E. Harris, “Femtosecond- pulse-driven, electron-excited xuv lasers in eight-times-ionized noble gases,” Opt. Lett. 19, 569–571 (1994).

[9] S. Sebban, T. Mocek, D. Ros, L. Upcraft, P. Balcou, R. Haroutunian, G. Grillon, B. Rus, A. Klisnick, A. Carillon, G. Jamelot, C. Valentin, A. Rousse, J. P. Rousseau, L. Note- baert, M. Pittman, and D. Hulin, “Demonstration of a ni-like kr optical-field-ionization collisional soft x-ray laser at 32.8 nm,” Phys. Rev. Lett. 89, 253,901 (2002).

[10] T. Mocek, C. M. McKenna, B. Cros, S. Sebban, D. J. Spence, G. Maynard, I. Bettaibi, V. Vorontsov, A. J. Gonsavles, and S. M. Hooker, “Dramatic enhancement of xuv laser output using a multimode gas-filled capillary waveguide,” Phys. Rev. A 71,
013,804 (2005).

[11] H.-H. Chu, H.-E. Tsai, M.-C. Chou, L.-S. Yang, J.-Y. Lin, C.-H.
Lee, J. Wang, and S.-Y. Chen1, “Collisional excitation soft x-ray laser pumped by optical field ionization in a cluster jet,” Phys. Rev. A 71, 061,804 (2005).

[12] M.-C. Chou, P.-H. Lin, C.-A. Lin, J.-Y. Lin, J. Wang, and S.-Y. Chen, “Dramatic enhancement of optical-field-ionization collisional-excitation x-ray lasing by an optically preformed plasma waveguide,” Phys. Rev. Lett. 99, 063,904 (2007).

[13] A. Rundquist, C. G. D. III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-matched generation of coherent soft x-rays,” Science 280, 1412–1415 (1998).

[14] J. Seres, E. Seres, A. J.Verhoef, G. Tempea, C. Streli, P. Wobrauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz, “Source of coherent kiloelectronvolt x-rays,” Nature
433, 596 (2005).

[15] E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single- cycle nonlinear optics,” Science 320, 1614–1617 (2008).
指導教授 陳賜原、朱旭新(Szu-yuan Chen Hsu-hsin Chu) 審核日期 2014-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明