博碩士論文 952404003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.149.251.155
姓名 廖振皓(Zhen-Hao Liao)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 小菜蛾幾丁質相關蛋白之研究
(The study of chitin-associated proteins in Plutella xylostella)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 三氯乙烯與四氯乙烯對人類肺癌細胞之毒性研究★ Galectin-1 與 Thioredoxin peroxidase II 基因之選殖及表現
★ 亞砷酸鈉誘引分裂中期停滯細胞之蛋白質體研究★ Galectin-1蛋白與亞砷酸鈉毒性與結合作用之研究
★ 氧化壓迫與p53參與三氯乙烯及四氯乙烯誘導人類肺癌細胞凋亡之研究★ Thioredoxin Peroxidase II蛋白與亞砷酸鈉毒性與結合作用之研究
★ 環型類★ 綠茶對前脂肪細胞生長的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 小菜蛾 (Plutella xylostella, diamondback),繁殖能力強,生長世代短,可適應各種惡劣的環境,為世界性的十字花科作物重要害蟲,然而其幾丁質相關構造及酵素目前仍未被詳細研究。幾丁質為構成昆蟲表皮及圍食膜 (peritrophic matrix: PM) 之重要物質;幾丁質通常會與幾丁質結合蛋白 (chitin binding proteins: CBPs) 結合,CBPs對於幾丁質重要構造的形成、結構維持以及功能的調控,扮演重要的角色。本研究解析小菜蛾體內幾丁質重要構造之蛋白與幾丁質相關酵素,特別針對圍食膜蛋白 (PM proteins: PMP)、CBPs以及幾丁質? (Chitinase: Chts) 等幾丁質相關蛋白,根據CBPs之基因表現情形、親緣關係分析及幾丁質?選殖與表現定性,期望獲得有助於研發新式鱗翅目害蟲防治之重要資訊。利用2-D電泳與質譜分析,可鑑定到四個 PM 相關蛋白,其身分皆為胰蛋白?,分別負責免疫與消化之功能。另外利用基因體搜尋CBPs (ChtBD2-type or peritrophin A-type),共找到16個具有一個幾丁質結合區域的表皮蛋白 CPAP1s (cuticular proteins analogous to peritrophins with 1 chitin binding domain (CBD))、7個具有三個幾丁質結合區域的表皮蛋白 CPAP3s (CPAPs with 3CBDs)、12個PMPs,以及幾丁質相關酵素,包括7個Chts和7個幾丁質脫乙醯? (chitin deacetylases: CDAs)。最後利用基因選殖技術 (rapid amplification of cDNA ends-PCR),搭配基因體與轉錄體之搜尋,總共可找到15個Chts,其中本論文選殖的PxCht25-1 和 PxCht25-2,為小菜蛾特有之新式Chts,且只在中腸特有表現。另外將選殖而來的PxCht5、PxCht7 和PxCht25-1,分別於大腸桿菌、酵母菌與昆蟲細胞表現蛋白。大腸桿菌表現系統之重組蛋白,可能因蛋白摺疊錯誤,影響了結構,使其喪失幾丁質內切之能力;酵母菌表現系統之重組蛋白,則因過度醣化修飾,使得分子量遠大於預期,且影響了活性;昆蟲細胞表現系統則為幾丁質?最佳表現系統,擁有最佳的酵素動力學數值。
摘要(英) Chitin is a major structural component of the cuticle and the peritrophic matrix (PM) in insects and is always associated with chitin binding proteins (CBPs) which are important for forming, maintaining and regulating the functions of these extracellular structures. Although the diamondback moth (DBM) Plutella xylostella, which has a high reproductive potential, short generation time, and characteristic adaptation to adverse environments, has become one of the most serious pests of cruciferous plants worldwide, the information on the chitin-containing structures and chitin turnover of the moth is presently limited. The overall objective of this dissertation was to study the PM proteins (PMPs), CBPs, and chitinases. Four trpsin like proteins which involved in immune or digestive functions were identified as PM associated proteins using 2-D electrophoresis and mass spectrometry. A genome-wide search for genes encoding proteins with ChtBD2-type (peritrophin A-type) chitin binding domains (CBDs) from P. xylostella was conducted. CBPs were classified, including 16 CPAP1s (cuticular proteins analogous to peritrophins with 1 CBD), 7 CPAP3s (CPAPs with 3CBDs), 12 PMPs and enzymes of chitin metabolism (7 chitinases and 7 chitin deacetylases) with a variable number of CBDs. The expression of CBP genes were evaluated by RT-PCR and the phylogenetic relationships among the CBPs from different order were further characterized. Moreover, we totally identified 15 chitinase genes using degenerated polymerase chain reaction (PCR) and rapid amplification of cDNA ends-PCR strategies coupled with searching chitinase-like sequences from the genomic and transcriptomic database. Based on the domain analysis of the deduced amino acid sequences and the phylogenetic analysis of the catalytic domain sequences, two of the gut-specific chitinases (PxCht25-1 and PxCht25-2) did not cluster with any of the known phylogenetic groups of chitinases and might be in a new group of the chitinase family. The expressions of PxCht5, PxCht7 and PxCht25-1 genes were performed in Escherichia coli, yeast and a baculovirus-insect cell expression system for enzymatic characterization. Their apparent molecular weights were different from the predicted ones, might be attributable to the incorrect folding or varying levels of glycosylation. Further biochemical analysis indicated that the recombinant proteins from the E. coli system lack endo-chitinase activity and baculovirus-insect cell might be the optimal chitinase expression system due to better kinetic values. With this information, a better understanding of the chitin-associated proteins involved in PM, cuticle and chitin turnover might help to develop novel chitin-targeted strategies for Lepidopteran pest control.
關鍵字(中) ★ 小菜蛾
★ 幾丁質
關鍵字(英)
論文目次 摘要.............i
摘要.............i
Abstract....... ii
致謝............iv
目錄............v
圖目錄.... viii
表目錄.... x
縮寫表... xi
第一章 緒論...... 1
1.1 昆蟲幾丁質結構與組成.... 1
1.2 昆蟲幾丁質動態......... 1
1.3 幾丁質構築昆蟲重要構造 ........ 2
1.4 幾丁質結合蛋白..................3
1.5 幾丁質為蟲害管理之標的........4
1.6 研究目的............. 5
第二章 材料與方法 ................7
2.1 小菜蛾之飼養 ................7
2.2 分離與鑑定圍食膜蛋白 ........7
2.2.1 圍食膜蛋白萃取......... 7
2.2.2 二維蛋白質凝膠電泳 (Two-dimensional electrophoresis, 2-DE).................... 7
2.2.3 膠體內分解胜?片段 (In-gel tryptic digestion).... 8
2.2.4 胺基酸序列分析及蛋白質資料庫搜尋....... 8

2.3 小菜蛾幾丁質結合蛋白之研究 ........................... 9
2.3.1 基因體資料庫搜尋 ............................ 9
2.3.2 幾丁質結合蛋白基因表現情形 ........................9
2.3.3 序列及演化樹分析 ............................ 10
2.4 小菜蛾幾丁質?之研究 ............................. 10
2.4.1 基因體資料庫搜尋 ............................ 10
2.4.2 幾丁質?之基因選殖 ............................ 10
2.4.3 幾丁質?基因表現情形 .......................... 11
2.4.4 幾丁質?表現載體之建構 ......................... 11
2.4.5 純化幾丁質?重組蛋白 ........................... 12
2.4.6 膠體電泳及西方墨點法 .......................... 13
2.4.7 幾丁質?重組蛋白活性分析與酵素動力學 ............ 14
2.4.8 幾丁質?催化性部位結構模擬 ........................ 14
2.4.9 序列及演化樹分析 ........................... 14
第三章 結果 ............................... 16
3.1 質譜分析鑑定圍食膜蛋白 .................... 16
3.2 幾丁質結合蛋白的分類 ......................... 16
3.2.1 表皮蛋白 .............................. 16
3.2.2 圍食膜蛋白 ................................ 18
3.2.3 幾丁質代謝之酵素 .................... 18
3.3 鑑定小菜蛾幾丁質? ............................ 18
3.3.1 幾丁質?的分類 .......................... 19
3.3.2 幾丁質?序列分析及表現情形 ........................ 20
3.3.3 幾丁質?蛋白表現與生化活性 ................... 20
第四章 討論 ..................................... 23
4.1 質譜鑑定小菜蛾圍食膜蛋白.......................23
4.2 基因體搜尋小菜蛾圍食膜蛋白.....................24
4.3 基因體搜尋小菜蛾表皮蛋白.......................25

4.4 小菜蛾圍食膜與表皮蛋白之演化情形...............26
4.5 基因體搜尋小菜蛾幾丁質結合相關酵素..............27
4.6 其他小菜蛾幾丁質相關酵素.....................27
4.7 小菜蛾幾丁質?之序列分析與特性.................29
4.8 小菜蛾幾丁質?蛋白之生化特性..................32
第五章 結論與展望 ........................... 35
參考文獻 ...................................... 37
附錄
Supplemental Fig. 1. Phylogenetic analysis of the chitin binding domain of CPAP1s and
of the first CBD of CPAP3s and PMPs from Plutella xylostella.. ............................. 85
Supplemental Fig. 2. Complete genomic DNA sequence and cDNA deduced amino acid
sequence of PxCht8-2... ............................................................................................. 86
Supplemental table 1. The accession number for the CBPs used in phylogenesis. .............. 87
Supplemental table 2. Primer sets and conditions used for the RT-PCR in this Figure 4, 6
and 11....................................... 88
Supplemental table 3. The accession number for the chitinase proteins used in figure 14. . 89
Supplemental table 4. The accession number for the chitinase proteins used in figure 15 and
16. ....................................... 90
Supplemental table 5. Primer sets and conditions used for the RT-PCR in figure 19. ......... 91
Supplemental table 6. Primers and coditions used for the amplification of cDNA
corresponding to PxCht5, 7, 25-1 and 25-2. .................. 92
Supplemental table 7. Primers used to amplify the coding region fragments of PxCht5, 7,
25-1 genes. ....................................... 93
圖目錄
Fig. 1. Proteomic strategies for the identification of PM proteins from Plutela xylostella. . 50
Fig. 2. Typical 2-DE profiles of PM-Intergral and gut proteins.. ......................................... 51
Fig. 3. Phylogenetic analysis of the chitin binding domain of CPAP1s.. ............................. 52
Fig. 4. Expression of P. xylostella CPAP1 genes in different developmental stages and
different tissues as evaluated by RT-PCR.. ................................................................ 53
Fig. 5. Phylogenetic analysis of the full protein sequences of CPAP3s.. ............................. 54
Fig. 6. Phylogenetic analysis of the three chitin binding domains of CPAP3s. ................... 55
Fig. 7. Expression of P. xylostella CPAP3 genes in different developmental stages and
different tissues as evaluated by RT-PCR.. ................................................................ 56
Fig. 8. Phylogenetic analysis of the chitin binding domains of PMPs from P. xylostella and
M. sexta.. .................................................................................................................... 57
Fig. 9. Phylogenetic analysis of the chitin binding domains of PMPs from P. xylostella and T.
castaneum.. ................................................................................................................ 58
Fig. 10. Phylogenetic analysis of the chitin binding domains of PMPs from P. xylostella, M.
sexta and from T. castaneum.. ................................................................................... 59
Fig. 11. Expression of P. xylostella PMP genes in different developmental stages and
different tissues as evaluated by RT-PCR.. ................................................................ 60
Fig. 12. Phylogenetic analysis of the chitin binding domains of chitinases (Chts) from three
different insect species.. ............................................................................................. 61
Fig. 13. Phylogenetic analysis of the chitin binding domain of chitin deacetylases (CDAs)
from three different insect species.. ........................................................................... 62
Fig. 14. Phylogenetic analysis of RACE-PCR cloned chitinase proteins based on catalytic
domain sequences.. .................................................................................................... 63
Fig. 15. Phylogenetic analysis of lepidopteran chitinase proteins (NJ method) based on
catalytic domain sequences.. ..................................................................................... 64
Fig. 16. Phylogenetic analysis of lepidopteran chitinase proteins (ML method) based on
catalytic domain sequences. ...................................................................................... 65
Fig. 17. Domain architecture of the chitinase proteins of Plutella xylostella. ..................... 66
Fig. 18. Conserved regions in catalytic domains of chitinase proteins in Plutella xylostella..
................................................................................................................................... 67
Fig. 19. Expression of P. xylostella chitinase genes in different developmental stages and
different tissues as evaluated by RT-PCR. ................................................................. 68
Fig. 20. SDS-PAGE and Western blot analysis of three recombinant chitinases from E. coli..
................................................................................................................................... 69
Fig. 21. SDS-PAGE and Western blot analysis of two recombinant chitinase from yeast.. . 70
Fig. 22. SDS-PAGE and Western blot analysis of two recombinant chitinase expressed in
insect cell.. ................................................................................................................. 71
Fig. 23. Effects of pH and temperature on the purified recombinant PxCht5 and PxCht25-1
activities using the yeast system.. .............................................................................. 72
Fig. 24. Effects of pH and temperature on the purified recombinant PxCht7 and PxCht25-1
activities using the baculovirus-insect system.. ......................................................... 73
Fig. 25. Structure prediction of PxCht5 catalytic domain by using SWISS-MODEL. ........ 74
Fig. 26. Structure prediction of PxCht25-1 catalytic domain by using SWISS-MODEL. ... 75
Fig. 27. Homology structures of PxCht5 and PxCht25-1.. ................................................... 76
x
表目錄
Table 1. Identification of PM proteins by ESI-Q-TOF. ........................................................ 77
Table 2. Plutella xylostella genes encoding proteins with ChtBD2 domains.. ..................... 78
Table 3. Consensus of conserved cysteines (C) and spacings (X) of the ChtBD2 chitin
binding domain (CBD) for each category of chitin binding protein (CBP).. ............ 79
Table 4. Information on genes encoding chitinase and chitinase-like proteins searched from
P. xylostella genome and transcriptomic databases. .................................................. 80
Table 5. The estimated molecular mass of purified proteins. ............................................... 81
Table 6. Kinetic parameters of two proteins expressed in yeast system and
baculovirus-insect system. ......................................................................................... 82
Table 7. Information on genes encoding other chitin-associated enzyme searched from P.
xylostella genome databases. ..................................................................................... 83
Table 8. The predicted post-translational modification on the P. xylostella chitinases. ....... 84
參考文獻 Abdel-Banat BM, Koga D. 2001. A genomic clone for a chitinase gene from the silkworm, Bombyx mori: structural organization identifies functional motifs. Insect Biochem Mol Biol 31:497-508.
Abdel-Banat BM, Koga D. 2002. Alternative splicing of the primary transcript generates heterogeneity within the products of the gene for Bombyx mori chitinase. J Biol Chem 277:30524-30534.
Agrawal S, Kelkenberg M, Begum K, Steinfeld L, Williams CE, Kramer KJ, Beeman RW, Park Y, Muthukrishnan S, Merzendorfer H. 2014. Two essential peritrophic matrix proteins mediate matrix barrier functions in the insect midgut. Insect Biochem Mol Biol 49:24-34.
Ahmad T, Rajagopal R, Bhatnagar RK. 2003. Molecular characterization of chitinase from polyphagous pest Helicoverpa armigera. Biochem Biophys Res Commun 310:188-195.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403-410.
Andersen SO. 1979. Biochemistry of insect cuticle. Annu Rev Entomol 24:29-61.
Andersen SO. 2010. Insect cuticular sclerotization: a review. Insect Biochem Mol Biol 40:166-178.
Ankersmit GW. 1953. DDT-resistance in Plutella-Maculipennis (Curt) (Lep) in Java. B Entomol Res 44:421-&.
Arakane Y, Dixit R, Begum K, Park Y, Specht CA, Merzendorfer H, Kramer KJ, Muthukrishnan S, Beeman RW. 2009. Analysis of functions of the chitin deacetylase gene family in Tribolium castaneum. Insect Biochem Mol Biol 39:355-365.
Arakane Y, Muthukrishnan S, Kramer KJ, Specht CA, Tomoyasu Y, Lorenzen MD, Kanost M, Beeman RW. 2005. The Tribolium chitin synthase genes TcCHS1 and TcCHS2 are specialized for synthesis of epidermal cuticle and midgut peritrophic matrix. Insect Mol Biol 14:453-463.
Arakane Y, Zhu Q, Matsumiya M, Muthukrishnan S, Kramer KJ. 2003. Properties of catalytic, linker and chitin-binding domains of insect chitinase. Insect Biochem Mol Biol 33:631-648.
Ashfaq M, Sonoda S, Tsumuki H. 2007. Developmental and tissue-specific expression of CHS1 from Plutella xylostella and its response to chlorfluazuron. Pestic Biochem Phys 89:20-30.
Assenga SP, You M, Shy CH, Yamagishi J, Sakaguchi T, Zhou JL, Kibe MK, Xuan XN, Fujisaki K. 2006. The use of a recombinant baculovirus expressing a chitinase from the hard tick Haemaphysalis longicornis and its potential application as a bioacaricide for tick control. Parasitol Res 98:111-118.
Bao WH, Cao BD, Zhang YA, Wuriyanghan H. 2016. Silencing of Mythimna separata chitinase genes via oral delivery of in planta-expressed RNAi effectors from a recombinant plant virus. Biotechnol Lett 38:1961-1966.
Barry MK, Triplett AA, Christensen AC. 1999. A peritrophin-like protein expressed in the embryonic tracheae of Drosophila melanogaster. Insect Biochem Mol Biol 29:319-327.
Behr M, Hoch M. 2005. Identification of the novel evolutionary conserved obstructor multigene family in invertebrates. FEBS Lett 579:6827-6833.
Bolognesi R, Arakane Y, Muthukrishnan S, Kramer KJ, Terra WR, Ferreira C. 2005. Sequences of cDNAs and expression of genes encoding chitin synthase and chitinase in the midgut of Spodoptera frugiperda. Insect Biochem Mol Biol 35:1249-1259.
Bolognesi R, Ribeiro AF, Terra WR, Ferreira C. 2001. The peritrophic membrane of Spodoptera frugiperda: secretion of peritrophins and role in immobilization and recycling digestive enzymes. Arch Insect Biochem Physiol 47:62-75.
Broehan G, Zimoch L, Wessels A, Ertas B, Merzendorfer H. 2007. A chymotrypsin-like serine protease interacts with the chitin synthase from the midgut of the tobacco hornworm. J Exp Biol 210:3636-3643.
Campbell PM, Cao AT, Hines ER, East PD, Gordon KH. 2008. Proteomic analysis of the peritrophic matrix from the gut of the caterpillar, Helicoverpa armigera. Insect Biochem Mol Biol 38:950-958.
Cao X, He Y, Hu Y, Zhang X, Wang Y, Zou Z, Chen Y, Blissard GW, Kanost MR, Jiang H. 2015. Sequence conservation, phylogenetic relationships, and expression profiles of nondigestive serine proteases and serine protease homologs in Manduca sexta. Insect Biochem Mol Biol 62:51-63.
Cates RG. 1980. Feeding Patterns of Monophagous, oligophagous, and polyphagous insect herbivores - the effect of resource abundance and plant chemistry. oecologia 46:22-31.
Chang CC, Tsai CT, Chang CY. 2002. Structural restoration of inactive recombinant fish growth hormones by chemical chaperonin and solvent restraint approaches. Protein Eng 15:437-441.
Chaudhari SS, Arakane Y, Specht CA, Moussian B, Boyle DL, Park Y, Kramer KJ, Beeman RW, Muthukrishnan S. 2011. Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton. Proc Natl Acad Sci U S A 108:17028-17033.
Chen L, Liu T, Zhou Y, Chen Q, Shen X, Yang Q. 2014. Structural characteristics of an insect group I chitinase, an enzyme indispensable to moulting. Acta Crystallogr D Biol Crystallogr 70:932-942.
Chen SJ, Chen NT, Wang SH, Hsu JC, Ding WH, Kuo-Huang LL, Huang RN. 2009. Insecticidal action of mammalian galectin-1 against diamondback moth (Plutella xylostella). Pest Manag Sci 65:923-930.
Chen YJ, Chen WS, Wu TY. 2005. Development of a bi-cistronic baculovirus expression vector by the Rhopalosiphum padi virus 5′ internal ribosome entry site. Biochem Biophys Res Commun 335:616-623.
Daimon T, Hamada K, Mita K, Okano K, Suzuki MG, Kobayashi M, Shimada T. 2003. A Bombyx mori gene, BmChi-h, encodes a protein homologous to bacterial and baculovirus chitinases. Insect Biochem Mol Biol 33:749-759.
de la Vega H, Specht CA, Liu Y, Robbins PW. 1998. Chitinases are a multi-gene family in Aedes, Anopheles and Drosophila. Insect Mol Biol 7:233-239.
Ding X, Gopalakrishnan B, Johnson LB, White FF, Wang X, Morgan TD, Kramer KJ, Muthukrishnan S. 1998. Insect resistance of transgenic tobacco expressing an insect chitinase gene. Transgenic Res 7:77-84.
Dinglasan RR, Devenport M, Florens L, Johnson JR, McHugh CA, Donnelly-Doman M, Carucci DJ, Yates JR, 3rd, Jacobs-Lorena M. 2009. The Anopheles gambiae adult midgut peritrophic matrix proteome. Insect Biochem Mol Biol 39:125-134.
Dittmer NT, Tetreau G, Cao X, Jiang H, Wang P, Kanost MR. 2015. Annotation and expression analysis of cuticular proteins from the tobacco hornworm, Manduca sexta. Insect Biochem Mol Biol 62:100-113.
Dixit R, Arakane Y, Specht CA, Richard C, Kramer KJ, Beeman RW, Muthukrishnan S. 2008. Domain organization and phylogenetic analysis of proteins from the chitin deacetylase gene family of Tribolium castaneum and three other species of insects. Insect Biochem Mol Biol 38:440-451.
Dong Z, Zhang W, Zhang Y, Zhang X, Zhao P, Xia Q. 2016. Identification and characterization of novel chitin-binding proteins from the larval cuticle of silkworm, Bombyx mori. J Proteome Res 15:1435-1445.
Douris V, Steinbach D, Panteleri R, Livadaras I, Pickett JA, Van Leeuwen T, Nauen R, Vontas J. 2016. Resistance mutation conserved between insects and mites unravels the benzoylurea insecticide mode of action on chitin biosynthesis. Proc Natl Acad Sci U S A 113:14692-14697.
Elvin CM, Vuocolo T, Pearson RD, East IJ, Riding GA, Eisemann CH, Tellam RL. 1996. Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina. cDNA and deduced amino acid sequences. J Biol Chem 271:8925-8935.
Fescemyer HW, Sandoya GV, Gill TA, Ozkan S, Marden JH, Luthe DS. 2013. Maize toxin degrades peritrophic matrix proteins and stimulates compensatory transcriptome responses in fall armyworm midgut. Insect Biochem Mol Biol 43:280-291.
Fitches E, Wilkinson H, Bell H, Bown DP, Gatehouse JA, Edwards JP. 2004. Cloning, expression and functional characterisation of chitinase from larvae of tomato moth (Lacanobia oleracea): a demonstration of the insecticidal activity of insect chitinase. Insect Biochem Mol Biol 34:1037-1050.
Fukamizo T, Kramer KJ. 1985. Mechanism of chitin hydrolysis by the binary chitinase system in insect molting fluid. Insect Biochem 15:141-145.
Furlong MJ, Wright DJ, Dosdall LM. 2013. Diamondback moth ecology and management: problems, progress, and prospects. Annu Rev Entomol 58:517-541.
Gatehouse JA. 2011. Prospects for using proteinase inhibitors to protect transgenic plants against attack by herbivorous insects. Curr Protein Pept Sc 12:409-416.
Guo W, Li G, Pang Y, Wang P. 2005. A novel chitin-binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni. Insect Biochem Mol Biol 35:1224-1234.
Harper MS, Hopkins TL, Czapla TH. 1998. Effect of wheat germ agglutinin on formation and structure of the peritrophic membrane in European corn borer (Ostrinia nubilalis) larvae. Tissue Cell 30:166-176.
Harrison RL, Bonning BC. 2010. Proteases as insecticidal agents. Toxins 2:935-953.
Hegedus D, Erlandson M, Gillott C, Toprak U. 2009. New insights into peritrophic matrix synthesis, architecture, and function. Annu Rev Entomol 54:285-302.
Hiruma K, Kaneko Y. 2013. Hormonal regulation of insect metamorphosis with special reference to juvenile hormone biosynthesis. Curr Top Dev Biol 103:73-100.
Holt DC, Fischer K, Allen GE, Wilson D, Wilson P, Slade R, Currie BJ, Walton SF, Kemp DJ. 2003. Mechanisms for a novel immune evasion strategy in the scabies mite Sarcoptes scabiei: a multigene family of inactivated serine proteases. J Invest Dermatol 121:1419-1424.
Hu X, Chen L, Xiang X, Yang R, Yu S, Wu X. 2012. Proteomic analysis of peritrophic membrane (PM) from the midgut of fifth-instar larvae, Bombyx mori. Mol Biol Rep 39:3427-3434.
Huang X, Tsuji N, Miyoshi T, Motobu M, Islam MK, Alim MA, Fujisaki K. 2007. Characterization of glutamine: fructose-6-phosphate aminotransferase from the ixodid tick, Haemaphysalis longicornis, and its critical role in host blood feeding. Int J Parasitol 37:383-392.
Huang X, Zhang H, Zen KC, Muthukrishnan S, Kramer KJ. 2000. Homology modeling of the insect chitinase catalytic domain-oligosaccharide complex and the role of a putative active site tryptophan in catalysis. Insect Biochem Mol Biol 30:107-117.
Huang Y, Chen Y, Zeng B, Wang Y, James AA, Gurr GM, Yang G, Lin X, You M. 2016. CRISPR/Cas9 mediated knockout of the abdominal-A homeotic gene in the global pest, diamondback moth (Plutella xylostella). Insect Biochem Mol Biol 75:98-106.
Huvenne H, Smagghe G. 2010. Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227-235.
Ioannidou ZS, Theodoropoulou MC, Papandreou NC, Willis JH, Hamodrakas SJ. 2014. CutProtFam-Pred: Detection and classification of putative structural cuticular proteins from sequence alone, based on profile Hidden Markov Models. Insect Biochem Mol Biol 52:51-59.
Jasrapuria S, Arakane Y, Osman G, Kramer KJ, Beeman RW, Muthukrishnan S. 2010. Genes encoding proteins with peritrophin A-type chitin-binding domains in Tribolium castaneum are grouped into three distinct families based on phylogeny, expression and function. Insect Biochem Mol Biol 40:214-227.
Jasrapuria S, Specht CA, Kramer KJ, Beeman RW, Muthukrishnan S. 2012. Gene families of cuticular proteins analogous to peritrophins (CPAPs) in Tribolium castaneum have diverse functions. PLoS One 7:e49844.
Jiang H, Vilcinskas A, Kanost MR. 2010. Immunity in lepidopteran insects. Adv Exp Med Biol 708:181-204.
Johnson DR. 1953. Plutella-Maculipennis resistance to DDT in java. J Econ Entomol 46:176-176.
Jouraku A, Yamamoto K, Kuwazaki S, Urio M, Suetsugu Y, Narukawa J, Miyamoto K, Kurita K, Kanamori H, Katayose Y, Matsumoto T, Noda H. 2013. KONAGAbase: a genomic and transcriptomic database for the diamondback moth, Plutella xylostella. BMC Genomics 14:464.
Kariu T, Smith A, Yang XL, Pal U. 2013. A chitin deacetylase-like protein is a predominant constituent of tick peritrophic membrane that influences the persistence of lyme disease pathogens within the vector. PLoS One 8.
Kato N, Mueller CR, Fuchs JF, Wessely V, Lan Q, Christensen BM. 2006. Regulatory mechanisms of chitin biosynthesis and roles of chitin in peritrophic matrix formation in the midgut of adult Aedes aegypti. Insect Biochem Mol Biol 36:1-9.
Kelkenberg M, Odman-Naresh J, Muthukrishnan S, Merzendorfer H. 2015. Chitin is a necessary component to maintain the barrier function of the peritrophic matrix in the insect midgut. Insect Biochem Mol Biol 56:21-28.
Khajuria C, Buschman LL, Chen MS, Muthukrishnan S, Zhu KY. 2010. A gut-specific chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae. Insect Biochem Mol Biol 40:621-629.
Kim MG, Shin SW, Bae KS, Kim SC, Park HY. 1998. Molecular cloning of chitinase cDNAs from the silkworm, Bombyx mori and the fall webworm, Hyphantria cunea. Insect Biochem Mol Biol 28:163-171.
Kramer KJ, Corpuz L, Choi HK, Muthukrishnan S. 1993. Sequence of a cDNA and expression of the gene encoding epidermal and gut chitinases of Manduca sexta. Insect Biochem Mol Biol 23:691-701.
Kramer KJ, Muthukrishnan S. 1997. Insect chitinases: molecular biology and potential use as biopesticides. Insect Biochem Mol Biol 27:887-900.
Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B. 2011. Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci U S A 108:15966-15971.
Kzhyshkowska J, Gratchev A, Goerdt S. 2006. Stabilin-1, a homeostatic scavenger receptor with multiple functions. J Cell Mol Med 10:635-649.
Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.
Lehane MJ. 1997. Peritrophic matrix structure and function. Annu Rev Entomol 42:525-550.
Letunic I, Doerks T, Bork P. 2015. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257-260.
Li D, Zhang J, Wang Y, Liu X, Ma E, Sun Y, Li S, Zhu KY. 2015. Two chitinase 5 genes from Locusta migratoria: molecular characteristics and functional differentiation. Insect Biochem Mol Biol 58:46-54.
Li YL, Song HF, Zhang XY, Li DQ, Zhang TT, Ma EB, Zhang JZ. 2016a. Heterologous expression and characterization of two chitinase 5 enzymes from the migratory locust Locusta migratoria. Insect Sci 23:406-416.
Li Z, Feng X, Liu SS, You M, Furlong MJ. 2016b. Biology, Ecology, and Management of the diamondback moth in China. Annu Rev Entomol 61:277-296.
Liao ZH, Kuo TC, Kao CH, Chou TM, Kao YH, Huang RN. 2016. Identification of the chitinase genes from the diamondback moth, Plutella xylostella. Bull Entomol Res 106:769-780.
Lin HL, Xia XF, Yu LY, Vasseur L, Gurr GM, Yao FL, Yang G, You MS. 2015. Genome-wide identification and expression profiling of serine proteases and homologs in the diamondback moth, Plutella xylostella (L.). BMC Genomics 16.
Lineweaver H, Burk D. 1934. The determination of enzyme dissociation constants. J Am Chem Soc 56:658-666.
Liu X, Zhang H, Li S, Zhu KY, Ma E, Zhang J. 2012. Characterization of a midgut-specific chitin synthase gene (LmCHS2) responsible for biosynthesis of chitin of peritrophic matrix in Locusta migratoria. Insect Biochem Mol Biol 42:902-910.
Lu Y, Zen KC, Muthukrishnan S, Kramer KJ. 2002. Site-directed mutagenesis and functional analysis of active site acidic amino acid residues D142, D144 and E146 in Manduca sexta (tobacco hornworm) chitinase. Insect Biochem Mol Biol 32:1369-1382.
Mamta, Reddy KR, Rajam MV. 2016. Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Mol Biol 90:281-292.
Maue L, Meissner D, Merzendorfer H. 2009. Purification of an active, oligomeric chitin synthase complex from the midgut of the tobacco hornworm. Insect Biochem Mol Biol 39:654-659.
McCafferty HR, Moore PH, Zhu YJ. 2006. Improved Carica papaya tolerance to carmine spider mite by the expression of Manduca sexta chitinase transgene. Transgenic Res 15:337-347.
McFarlane HE, Doring A, Persson S. 2014. The cell biology of cellulose synthesis. Annu Rev Plant Biol 65:69-94.
Merzendorfer H. 2006. Insect chitin synthases: a review. J Comp Physiol B 176:1-15.
Merzendorfer H. 2011. The cellular basis of chitin synthesis in fungi and insects: common principles and differences. Eur J Cell Biol 90:759-769.
Merzendorfer H. 2013. Chitin synthesis inhibitors: old molecules and new developments. Insect Sci 20:121-138.
Merzendorfer H, Zimoch L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:4393-4412.
Mikitani K, Sugasaki T, Shimada T, Kobayashi M, Gustafsson JA. 2000. The chitinase gene of the silkworm, Bombyx mori, contains a novel Tc-like transposable element. J Biol Chem 275:37725-37732.
Mortz E, Krogh TN, Vorum H, Gorg A. 2001. Improved silver staining protocols for high sensitivity protein identification using matrix-assisted laser desorption/ionization-time of flight analysis. Proteomics 1:1359-1363.
Muhlia-Almazan A, Sanchez-Paz A, Garcia-Carreno FL. 2008. Invertebrate trypsins: a review. J Comp Physiol B 178:655-672.
Nakabachi A, Shigenobu S, Miyagishima S. 2010. Chitinase-like proteins encoded in the genome of the pea aphid, Acyrthosiphon pisum. Insect Mol Biol 19 Suppl 2:175-185.
Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y. 2015. Tribolium castaneum RR-1 cuticular protein TcCPR4 is required for formation of pore canals in rigid cuticle. PLoS Genet 11:e1004963.
Noh MY, Muthukrishnan S, Kramer KJ, Arakane Y. 2016. Cuticle formation and pigmentation in beetles. Curr Opin Insect Sci 17:1-9.
Paek A, Park HY, Jeong SE. 2012. Molecular cloning and functional expression of chitinase-encoding cDNA from the cabbage moth, Mamestra brassicae. Mol Cells 33:439-447.
Pan Y, Lu P, Wang Y, Yin L, Ma H, Ma G, Chen K, He Y. 2012. In silico identification of novel chitinase-like proteins in the silkworm, Bombyx mori, genome. J Insect Sci 12:150.
Pardo-Lopez L, Munoz-Garay C, Porta H, Rodriguez-Almazan C, Soberon M, Bravo A. 2009. Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides 30:589-595.
Perona JJ, Craik CS. 1995. Structural basis of substrate specificity in the serine proteases. Protein Sci 4:337-360.
Pesch YY, Riedel D, Behr M. 2015. Obstructor A organizes matrix assembly at the apical cell surface to promote enzymatic cuticle maturation in Drosophila. J Biol Chem 290:10071-10082.
Pesch YY, Riedel D, Patil KR, Loch G, Behr M. 2016. Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci Rep-Uk 6.
Petkau G, Wingen C, Jussen LCA, Radtke T, Behr M. 2012. Obstructor-A is required for epithelial extracellular matrix dynamics, exoskeleton function, and tubulogenesis. J Biol Chem 287:21396-21405.
Rao FV, Houston DR, Boot RG, Aerts JM, Hodkinson M, Adams DJ, Shiomi K, Omura S, van Aalten DM. 2005. Specificity and affinity of natural product cyclopentapeptide inhibitors against A. fumigatus, human, and bacterial chitinases. Chem Biol 12:65-76.
Rao R, Fiandra L, Giordana B, de Eguileor M, Congiu T, Burlini N, Arciello S, Corrado G, Pennacchio F. 2004. AcMNPV ChiA protein disrupts the peritrophic membrane and alters midgut physiology of Bombyx mori larvae. Insect Biochem Mol Biol 34:1205-1213.
Rebers JE, Riddiford LM. 1988. Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. J Mol Biol 203:411-423.
Rebers JE, Willis JH. 2001. A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem Mol Biol 31:1083-1093.
Ross J, Jiang H, Kanost MR, Wang Y. 2003. Serine proteases and their homologs in the Drosophila melanogaster genome: an initial analysis of sequence conservation and phylogenetic relationships. Gene 304:117-131.
Sarauer BL, Gillott C, Hegedus D. 2003. Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella. Insect Mol Biol 12:333-343.
Shao L, Devenport M, Fujioka H, Ghosh A, Jacobs-Lorena M. 2005. Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito, Aedes aegypti. Insect Biochem Mol Biol 35:947-959.
Shen Z, Jacobs-Lorena M. 1998. A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J Biol Chem 273:17665-17670.
Shi M, Huang F, Chen YF, Meng XF, Chen XX. 2009. Characterization of midgut trypsinogen-like cDNA and enzymatic activity in Plutella xylostella parasitized by Cotesia vestalis or Diadegma semiclausum. Arch Insect Biochem Physiol 70:3-17.
Shi X, Chamankhah M, Visal-Shah S, Hemmingsen SM, Erlandson M, Braun L, Alting-Mees M, Khachatourians GG, O′Grady M, Hegedus DD. 2004. Modeling the structure of the type I peritrophic matrix: characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin binding domains. Insect Biochem Mol Biol 34:1101-1115.
Shinoda T, Kobayashi J, Matsui M, Chinzei Y. 2001. Cloning and functional expression of a chitinase cDNA from the common cutworm, Spodoptera litura, using a recombinant baculovirus lacking the virus-encoded chitinase gene. Insect Biochem Mol Biol 31:521-532.
Sparks TC, Nauen R. 2015. IRAC: Mode of action classification and insecticide resistance management. Pestic Biochem Physiol 121:122-128.
Sun R, Liu C, Zhang H, Wang Q. 2015. Benzoylurea Chitin Synthesis Inhibitors. J Agric Food Chem 63:6847-6865.
Tabashnik BE, Cushing NL, Finson N, Johnson MW. 1990. Field Development of Resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera, Plutellidae). J Econ Entomol 83:1671-1676.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725-2729.
Tellam RL, Wijffels G, Willadsen P. 1999. Peritrophic matrix proteins. Insect Biochem Mol Biol 29:87-101.
Terra WR. 2001. The origin and functions of the insect peritrophic membrane and peritrophic gel. Arch Insect Biochem Physiol 47:47-61.
Terwisscha van Scheltinga AC, Armand S, Kalk KH, Isogai A, Henrissat B, Dijkstra BW. 1995. Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: evidence for substrate assisted catalysis. Biochemistry 34:15619-15623.
Tetreau G, Cao X, Chen YR, Muthukrishnan S, Jiang H, Blissard GW, Kanost MR, Wang P. 2015a. Overview of chitin metabolism enzymes in Manduca sexta: Identification, domain organization, phylogenetic analysis and gene expression. Insect Biochem Mol Biol 62:114-126.
Tetreau G, Dittmer NT, Cao X, Agrawal S, Chen YR, Muthukrishnan S, Haobo J, Blissard GW, Kanost MR, Wang P. 2015b. Analysis of chitin-binding proteins from Manduca sexta provides new insights into evolution of peritrophin A-type chitin-binding domains in insects. Insect Biochem Mol Biol 62:127-141.
Toprak U, Baldwin D, Erlandson M, Gillott C, Hegedus DD. 2010. Insect intestinal mucins and serine proteases associated with the peritrophic matrix from feeding, starved and moulting Mamestra configurata larvae. Insect Mol Biol 19:163-175.
Toprak U, Baldwin D, Erlandson M, Gillott C, Hou X, Coutu C, Hegedus DD. 2008. A chitin deacetylase and putative insect intestinal lipases are components of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix. Insect Mol Biol 17:573-585.
Toprak U, Erlandson M, Baldwin D, Karcz S, Wan L, Coutu C, Gillott C, Hegedus DD. 2016. Identification of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix proteins and enzymes involved in peritrophic matrix chitin metabolism. Insect Sci 23:656-674.
Toprak U, Hegedus DD, Baldwin D, Coutu C, Erlandson M. 2014. Spatial and temporal synthesis of Mamestra configurata peritrophic matrix through a larval stadium. Insect Biochem Mol Biol 54:89-97.
Venancio TM, Cristofoletti PT, Ferreira C, Verjovski-Almeida S, Terra WR. 2009. The Aedes aegypti larval transcriptome: a comparative perspective with emphasis on trypsins and the domain structure of peritrophins. Insect Mol Biol 18:33-44.
Wang J, Chen Z, Du J, Sun Y, Liang A. 2005. Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes. Plant Cell Rep 24:549-555.
Wang P, Granados RR. 1997a. An intestinal mucin is the target substrate for a baculovirus enhancin. P Natl Acad Sci USA 94:6977-6982.
Wang P, Granados RR. 1997b. Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA. J Biol Chem 272:16663-16669.
Wang P, Granados RR. 2000. Calcofluor disrupts the midgut defense system in insects. Insect Biochem Mol Biol 30:135-143.
Wang P, Granados RR. 2001. Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch Insect Biochem Physiol 47:110-118.
Wang P, Li G, Granados RR. 2004. Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut. Insect Biochem Mol Biol 34:215-227.
Watanabe T, Kobori K, Miyashita K, Fujii T, Sakai H, Uchida M, Tanaka H. 1993. Identification of glutamic acid-204 and aspartic acid-200 in Chitinase-A1 of Bacillus circulans Wl-12 as essential Residues for chitinase Activity. J Biol Chem 268:18567-18572.
Weiss BL, Savage AF, Griffith BC, Wu Y, Aksoy S. 2014. The peritrophic matrix mediates differential infection outcomes in the tsetse fly gut following challenge with commensal, pathogenic, and parasitic microbes. J Immunol 193:773-782.
Wijffels G, Eisemann C, Riding G, Pearson R, Jones A, Willadsen P, Tellam R. 2001. A novel family of chitin-binding proteins from insect type 2 peritrophic matrix. cDNA sequences, chitin binding activity, and cellular localization. J Biol Chem 276:15527-15536.
Willis JH. 2010. Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem Mol Biol 40:189-204.
Wu QY, Liu T, Yang Q. 2013. Cloning, expression and biocharacterization of OfCht5, the chitinase from the insect Ostrinia furnacalis. Insect Sci 20:147-157.
Xi Y, Pan PL, Ye YX, Yu B, Xu HJ, Zhang CX. 2015. Chitinase-like gene family in the brown planthopper, Nilaparvata lugens. Insect Mol Biol 24:29-40.
Yao Q, Zhang D, Tang B, Chen J, Lu L, Zhang W. 2010. Identification of 20-hydroxyecdysone late-response genes in the chitin biosynthesis pathway. PLoS One 5:e14058.
You M, Xuan X, Tsuji N, Kamio T, Taylor D, Suzuki N, Fujisaki K. 2003. Identification and molecular characterization of a chitinase from the hard tick Haemaphysalis longicornis. J Biol Chem 278:8556-8563.
You MS, Yue Z, He WY, Yang XH, Yang G, Xie M, Zhan DL, Baxter SW, Vasseur L, Gurr GM, Douglas CJ, Bai JL, Wang P, Cui K, Huang SG, Li XC, Zhou Q, Wu ZY, Chen QL, Liu CH, Wang B, Li XJ, Xu XF, Lu CX, Hu M, Davey JW, Smith SM, Chen MS, Xia XF, Tang WQ, Ke FS, Zheng DD, Hu YL, Song FQ, You YC, Ma XL, Peng L, Zheng YK, Liang Y, Chen YQ, Yu LY, Zhang YN, Liu YY, Li GQ, Fang L, Li JX, Zhou X, Luo YD, Gou CY, Wang JY, Wang J, Yang HM, Wang J. 2013. A heterozygous moth genome provides insights into herbivory and detoxification. Nat Genet 45:220-225.
Zhang D, Chen J, Yao Q, Pan Z, Zhang W. 2012. Functional analysis of two chitinase genes during the pupation and eclosion stages of the beet armyworm Spodoptera exigua by RNA interference. Arch Insect Biochem Physiol 79:220-234.
Zhang J, Zhang X, Arakane Y, Muthukrishnan S, Kramer KJ, Ma E, Zhu KY. 2011a. Comparative genomic analysis of chitinase and chitinase-like genes in the African malaria mosquito (Anopheles gambiae). PLoS One 6:e19899.
Zhang J, Zhang X, Arakane Y, Muthukrishnan S, Kramer KJ, Ma E, Zhu KY. 2011b. Identification and characterization of a novel chitinase-like gene cluster (AgCht5) possibly derived from tandem duplications in the African malaria mosquito, Anopheles gambiae. Insect Biochem Mol Biol 41:521-528.
Zheng Y, Zheng S, Cheng X, Ladd T, Lingohr EJ, Krell PJ, Arif BM, Retnakaran A, Feng Q. 2002. A molt-associated chitinase cDNA from the spruce budworm, Choristoneura fumiferana. Insect Biochem Mol Biol 32:1813-1823.
Zhong XW, Wang XH, Tan X, Xia QY, Xiang ZH, Zhao P. 2014. Identification and molecular characterization of a chitin deacetylase from Bombyx mori Peritrophic Membrane. Int J Mol Sci 15:1946-1961.
Zhu-Salzman K, Zeng RS. 2015. Insect Response to Plant Defensive Protease Inhibitors. Annu Rev Entomol, Vol 60 60:233-252.
Zhu KY, Merzendorfer H, Zhang W, Zhang J, Muthukrishnan S. 2016. Biosynthesis, Turnover, and Functions of Chitin in Insects. Annu Rev Entomol 61:177-196.
Zhu Q, Arakane Y, Banerjee D, Beeman RW, Kramer KJ, Muthukrishnan S. 2008a. Domain organization and phylogenetic analysis of the chitinase-like family of proteins in three species of insects. Insect Biochem Mol Biol 38:452-466.
Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S. 2008b. Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum. Insect Biochem Mol Biol 38:467-477.
Zhu Q, Arakane Y, Beeman RW, Kramer KJ, Muthukrishnan S. 2008c. Functional specialization among insect chitinase family genes revealed by RNA interference. Proc Natl Acad Sci U S A 105:6650-6655.
Zhu Q, Deng Y, Vanka P, Brown SJ, Muthukrishnan S, Kramer KJ. 2004. Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome. Bioinformatics 20:161-169.
Zhu R, Liu K, Peng J, Yang H, Hong H. 2007. Optical brightener M2R destroys the peritrophic membrane of Spodoptera exigua (Lepidoptera: Noctuidae) larvae. Pest Manag Sci 63:296-300.
Zhu X, Zhang H, Fukamizo T, Muthukrishnan S, Kramer KJ. 2001. Properties of Manduca sexta chitinase and its C-terminal deletions. Insect Biochem Mol Biol 31:1221-1230.
Zimoch L, Hogenkamp DG, Kramer KJ, Muthukrishnan S, Merzendorfer H. 2005. Regulation of chitin synthesis in the larval midgut of Manduca sexta. Insect Biochem Mol Biol 35:515-527.
指導教授 黃榮南、高永旭(Rong-Nan Huang Yung-Hsi Kao) 審核日期 2017-1-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明