博碩士論文 952406016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.139.97.157
姓名 傅毅耕(Yi-Keng Fu)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 氮化物藍光發光二極體及太陽能電池之光電特性研究
(Optoelectronic Characteristics Study of Nitride-based ight-Emitting Diodes and Solar Cell Devices)
相關論文
★ 紫外光發光二極體製程技術與元件特性研究★ 網狀電極應用在氮化物紫外光光偵測器之研究
★ 不同電流阻障層對氮化鎵發光二極體之光電特性研究★ 具網狀結構之紫外光發光二極體之特性研究
★ 氧化鋅鎵之透明導電薄膜材料特性與其應用在氮化鎵發光二極體上之研究★ 以有機金屬化學氣相沉積法成長氮化物藍光發光二極體與其光電特性研究
★ 氮化鎵薄膜成長於奈米級圖樣化氮化鎵基板之研究★ 氧化鋅鋁透明導電薄膜的熱穩定性於氮化鎵藍色發光二極體之研究
★ 具有倒金字塔側壁之氮化鎵發光二極體的製作★ 應用氮化鎵奈米柱基板提升氮化鎵發光二極體之電流擴散
★ 圖案化二氧化矽奈米柱結構應用於氮化鎵發光二極體之研究★ 利用陽極氧化法製備奈米結構圖案化藍寶石基板之研究
★ 二氧化矽奈米柱結構應用於氮化銦鎵太陽能電池元件之研究★ 以氫化物氣相磊晶法成長氮化鎵厚膜於氮化鎵奈米柱之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,氮化物材料是以有機金屬氣相沉積法 (metal-organicvapor phase epitaxy, MOVPE)所成長的並研究其氮化物光電半導體材料特性,主要是針對氮化物系列的發光二極體元件和太陽能電池之光電特性進行研究。首先,我們利用氮化鎵/氮化鎂(GaN/MgxNy)緩衝層(buffer layer)來減少錯位 (dislocation)的產生,從X-ray及霍爾量測分析可知使用氮化鎵/氮化鎂緩衝層確實可以提升氮化鎵薄膜的品質,其錯位缺陷密度可有效地從傳統使用低溫氮化鎵緩衝層~4.5 × 108 cm-2降低一倍到2.2 × 108 cm-2,在藍光發光二極體方面,使用氮化鎵/氮化鎂緩衝層可降低元件的逆向飽和電流,在逆偏-20 V量測下,其元件漏電流可從2.1 × 10-5 A改善到4.53 × 10-6 A,在順向20 mA電流注入下,對於元件光輸出功率可從原本的5.36 mW提升到5.97 mW,提升幅度為12%。
在發光二極體方面,在成長傳統單一層量子井主動層之前,先成長一層氮化銦鎵(In0.08Ga0.92N)層,此氮化銦鎵(In0.08Ga0.92N)層可有效地促進隨後成長之主動層的銦自聚形成,提供較大的載子侷限效應 localized state effect),跟未使用氮化銦鎵(In0.08Ga0.92N)層的發光二極體的光輸出功率比較,可從原本的2.9 mW提升到6.6 mW,其發光二極體光輸出功率提升為2.2倍。接著,我們針對藍光發光二極體在大電流注入下其內部量子效率下降問題作探討,本實驗提出使用氮化銦/氮化鎵多層式成長法作為主動層,可有效的改善從量子井與量子能障間所產生的缺陷、提升量子井與量子能障間的接面品質、提升載子的侷限效應、降低極化場的應力,在注入電流密度500 A/cm2下,跟傳統多層式量子井結構比較其發光功率可從71.0 mW提到到89.4 mW,提升幅度為26%,在注入電流密度500 A/cm2下,其傳統多層式量子井結構發光二極體之量子效率與其峰值之差異為47%,使用氮化銦/氮化鎵多層式結構可改善到與其峰值之差異為21%。
在氮化鎵太陽能電池應用方面,我們利用多層量子井結構(multiplequantum wells, MQW)作為吸收層,與傳統的厚膜氮化銦鎵吸收層比較起來,多層量子井結構的太陽能電池可避免厚膜的高銦含量的氮化銦鎵相分離問題,提升太陽能電池之填充因子(fill factor, FF),此外,利用多層量子井結構可控制其太陽能電池之開路電壓和短路電流特性;在改善太陽能電池光電特性方面,我們利用AZO當作穿透層(transparent layer),可以有效增加短路電流密度,可從原本的0.343 mA/cm2提升到0.473 mA/cm2,整體轉換效
率可從原本的0.26 %提升到0.39 %,最佳化條件的太陽能電池之開路電壓1.30 V、短路電流密度0.473 mA/cm2、填充因子0.630和轉換效率為0.39 %成功的研製。
摘要(英) In this dissertation, the growth and characterization of multiple MgxNy/GaN buffer layers and InGaN/GaN blue light-emitting diodes have been studied. The improvement of both LED light output power and efficiency droop are investigated. In addition, we also discuss the optoelectronic characteristics of nitride-based solar cells with MQW absorption layer. The primary results obtained in this dissertation are summarized as follow: (a) It was found that the GaN grown on MgxNy buffer layer showed lower dislocation density (~2.2 × 108 cm-2), higher carrier mobility (~630 cm2/Vs), lower background carrier
concentration (~5.1× 1016 cm-3) and narrower FWHM of (002) (~228 arcsec) and (102) (~248 arcsec) in DCXRD, as compared with conventional GaN grown on low-temperature (LT) GaN buffer layer. The blue LEDs grown on 12-pairs MgxNy (120 sec)/GaN buffer layers could also reduce the reverse leakage current and enhance the LED output power from 5.36 mW to 5.97 mW at a 20 mA current injection, as compared with conventional LEDs. (b) For GaN-based LEDs, nitride-based asymmetric two-step LEDs with a In0.08Ga0.92N shallow step was proposed and fabricated. By inserting an In0.08Ga0.92N shallow step, it was found that LED output powers can be improved from 2.9 mW to 6.6 mW under a 20 mA current injection. The improvement of output power could be attributed the fact that the significant carrier localization effect in the asymmetric two-step LEDs can lead to higher IQE. Under high injection current density, LEDs with InN/GaN multilayer wells (MLWs) structure can improve both the light output power and efficiency droop, compared to the conventional InGaN MQW LED. Under an injection current density of 500 A/cm2, we can enhance LED output power from 71.0 mW to 89.4 mW, compared to conventional LED. As compared to the EQE at an injection current density of peak value, the EQE values at an injection current of 500 A/cm2 are approximately reduced by 47 % and 21 % for the conventional LED and
InN/GaN MLWs LED, respectively. These improvements could be attributed to the InN/GaN MLWs can significantly reduce the threading dislocations generated from active region, improve the interfacial quality between QW and QB, enhance the localized state and release strain in InGaN layer grown on GaN. (c) For GaN-based solar cells, The MQW structure should be able to maintain the material quality of high-indium-content InGaN alloys, leading to better device performance than devices with a single InGaN layer as the active layer. The short-circuit current density (JSC) and open-circuit voltage (VOC) can be modulated by different arrangement of blue and green QW in MQW absorption layer. The optimal electrical characteristics of solar cell with JSC = 0.473 mA/cm2, VOC = 1.30 V, fill factor (FF) = 0.630 and conversion efficiency = 0.39 % with AZO transparent contact layer (TCL) can be obtained.
關鍵字(中) ★ 氮化鎵
★ 內部量子效率
★ 發光二極體
★ 太陽能電池
關鍵字(英) ★ GaN
★ internal quantum efficiency
★ Light-emitting diode
★ Solar cells
論文目次 Contents
Abstract (in Chinese) i
Abstract (in English) iii
致謝 v
Contents vii
Table Captions ix
Figure Captions x
Chapter 1 Introduction 1
Chapter 2 Introduction of Metalorganic Vapor Phase Epitaxy System
2.1 Introduction 9
2.2 Close-Coupled Showerhead Technology 11
2.3 In Situ Monitoring of Epitaxial Growth 13
Chapter 3 High quality GaN Grown on Sapphire Substrate with a Multiple MgxNy/GaN Buffer Layers
3.1 Introduction 23
3.2 Experimental Procedure 24
3.3 Characteristics of Un-doped GaN with a Multiple MgxNy/GaN Buffer Layers 26
3.4 Nitride-based Blue LEDs Grown on a Multiple MgxNy/GaN Buffer Layers 31
3.5 Summary 33
Chapter 4 Nitride-based Asymmetric Two-step Light-emitting Diodes with a Low Content InGaN shallow step
4.1 Introduction 50
4.2 Experimental Procedure 51
4.3 Characteristics of Low Indium Content InGaN shallow step 52
4.4 Characteristics of Nitride-based LEDs with a Low Indium Content InGaN Shallow Step 55
4.5 Summary 59
Chapter 5 Improvement of Efficiency Droop of Nitride-based Light-emitting Diodes Grown with InN/GaN Multi-layer wells
5.1 Introduction 70
5.2 Experimental Procedure 73
5.3 Characteristics of Nitride-based Light-emitting Diodes Grown with InN/GaN Multi-layer wells 75
5.4 Summary 81
Chapter 6 The Optoelectronic Characteristics of Nitride-based Solar Cells with an InGaN/GaN Multi Quantum Well Absorption Layer
6.1 Introduction 98
6.2 Experimental Procedure 100
6.3 Design and Characterization of Nitride-based Solar Cells with Different Absorption Layers 102
6.4 The Effect of Absorption Layer of Different Quantum Well Arrangement on Optoelectronic Characteristics 108
6.5 Summary 111
Chapter 7 Conclusions and Future Works
7.1 Conclusions 130
7.2 Future Works 132
Publication List 135
Vita 140
參考文獻 [1] R. Juza and H. Hahn, Zeitschr. Anorgan. Allgem. Chem. 234, 282 (1940).
[2] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 367 (1969).
[3] J. Pankove, E. Miller, D. Richmann, and J. Berkeyheiser, J. Lumin. 4, 63 (1971).
[4] R. Dingle, K. Shaklee, R. Leheny, and R. Zetterstrom, Appl. Phys. Lett. 19, 5 (1971).
[5] I. Akasaki, Mater. Res. Soc. Symp. 510, 145 (1998).
[6] H. Manasevit, F. Erdman, and W. Simpson, J. Electrochem. Soc. 118, 1864 (1971).
[7] T. Kawabata, T. Matsuda, and S. Koike, J. Appl. Phys. 56, 2367 (1984).
[8] H. Amano et. al., Appl. Phys. Lett. 48, 353 (1986).
[9] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Jpn. J. Appl. Phys. 31,
1258 (1992).
[10] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
[11] S. Nakamura et al., Appl. Phys. Lett. 76, 22 (2000).
[12] M.T. Duffy, C.C. Wang, G’D. O’Clock, S.H. McFarlane III, and P.J. Zanzucchi, J. Elect. Mat. 2, 359 (1973).
[13] M. Razeghi and A. Rogalski, J. Appl. Phys. 79, 7433 (1996).
[14] G.Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, Appl. Phys. Lett. 71, 2154 (1997).
[15] I.J. Fritz and T.J. Drummond, Electron. Lett. 31, 68 (1995).
[16] R. C. Tu, C. J. Tun, S. M. Pan, H. P. Liu, C. E. Tsai, J. K. Sheu, C. C. Chuo, Te-Chung Wang, G. C. Chi, and I. G. Chen. IEEE Photon. Technol. Lett. 15, 1050 (2003).
[17] Ru-Chin Tu, Chun-Ju Tun, Shyi-Ming Pan, Chang-Cheng Chuo, J. K. Sheu, Ching-En Tsai, Te-Chung Wang, and Gou-Chung Chi, IEEE Photon. Technol. Lett. 15, 1342 (2003).
[18] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687 (1994).
[19] H. Morkoç and S.N. Mohammad, Science Magazine 267, 51 (1995).
[20] H. Morkoç and S.N. Mohammad, “Light Emitting Diodes,” in Wiley
Encyclopedia of Electrical Engineering and Electronics Engineering, J. Webster,
ed. John Wiley and Sons, New York, 1999.
[21] R. C. Tu, C. J. Tun, J. K. Sheu, W. H. Kuo, T. C. Wang, C. E. Tsai, J. T. Hsu, Jim Chi, and G. C. Chi, IEEE Electron. Dev. Lett. 24, 206 (2003).
[22] S. Nakamura, M. Senoh, N. Nagahama, N. Iwara, T. Yamada, T. Matsushita, H.Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K. Chocho, Jpn. J. Appl. Phys. 38, L1578 (1997).
[23] T. Nishida, H.Saito, and N. Kobayashi, Appl. Phys. Lett. 79, 711 (2001).
[24] H. X. Wang, H. D. Li, Y.B. Lee, H. Sato, K. Tamashita, T. Sugahara, and S. Sakai, J. Crystal Growth 264, 48 (2004).
[25] T. Wang, Y. H. Liu, Y. B. Lee, J. P. Ao, J. Bai, and S. Sakai, Appl. Phys. Lett. 81, 2508 (2002).
[26] M. Iwayal, S. Terao, S.Takanami, A.Miyazaki, S. Kamiyama, H. Amano, and I. Akasaki, Phys. Stat. Sol. C 1, 34 (2002).
[27] T. Nishida, N. Kobayashi, and T. Ban, Appl. Phys. Lett. 82, 1 (2003).
[28] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 38, 3976 (1999).
[29] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
[30] N. F. Gardner, G. O. Mueller, Y. C. Shen, G. Chen, S. Watababe, W. Goetz, and M. R. Krames, Appl. Phys. Lett. 91, 243507 (2007).
[31]M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Peprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).
[32] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 38, 3976 (1999).
[33] Y. Yang, X. A. Cao, and C. Yan, IEEE Tran. Electron. Dev. 55, 1771 (2008).
[34] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, Appl. Phys. Lett. 91, 231114 (2007).
[35] Y. L. Li, Y. R. Huang, and Y. H. Lai, Appl. Phys. Lett. 91, 181113 (2007).
[36] J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
[37] M. Hori, K. Kano, T. Yamaguchi, Y. Saito, T. Araki, Y. Nanishi, N. Teraguchi, and A. Suziki, phys. stat. sol. B 234, 750 (2002).
[38] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81 (2), 1246 (2002).
[39] A. Barnett, C. Honsberg, D. Kirkpatrick, S. Kurtz, D. Moore, D. Salzman, R. Schwartz, J. Gray, S. Bowden, K. Goossen, M. Haney, D. Aiken, M. Wanlass, and K. Emery, Proceedings of the Fourth World Conference on Photovoltaic Energy Conversion, Hawaii, 7-12 May 2006.
[40] E. Tybus, G. Namkoong, W. Henderson, S. Burnham, W. Doolitle, M. Cheung, and A. Cartwright, J. Cryst. Growth 288, 218 (2006).
[41] P. King, T. Veal, C. P. Jefferson, C. McConville, H. Lu, and W. Schaff, Phys. Rev. B 75, 115312 (2007).
[42] O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, Appl. Phys. Lett. 91, 132117 (2007).
[43] M. Hori, K. Kano, T. Yamaguchi, Y. Saito, T. Araki, Y. Nanishi, N. Teraguchi, and A. Suziki, phys. stat. sol. (b) 234, 750 (2002).
[44] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. Denbaars, and U. K. Mishra, Appl. Phys. Lett. 93, 143502 (2008).
[45] X. Chen, K. D. Matthews, D. Hao, W. J. Schaff, and L. F. Eastman, Phys. Status Solidi A 205, 1103 (2008).
[46] C. Theodoropoulos, T.J. Mountziaris, H.K. Moffat, and J. Han, J. Crystal Growth 217, 65 (2000).
[47] R. L. Mahajan, Advances in Heat Transfer, Academic Press, New York, 1996, p. 28.
[48] F. C. Eversteyn, P. J. W. Severin, C. H. J. Brekel, and H. L. Peek, J. Electrochem. Soc. 117, (7) 925 (1970).
[49] W. K. S. Chiu and Y. Jaluria, Heat transfer in horizontal and vertical CVD reactor, HTD-Vol. 347, ASME National Heat Transfer Conference, Vol. 9, ASME, New York, 1997, pp. 293–311.
[50] D. I. Fotiadis, S. Kieda, and K. F. Jensen, J. Crystal Growth 102, 441 (1990).
[51] H. M. Manasevit, Appl. Phys. Lett. 12, 156 (1968).
[52] H. M. Manasevit, F. Erdmann, and W. Simpson, J. Electrochem. Soc. 118, 1864 (1971).
[53] S. P. Denbaar, B. Y. Maa, P. D. Dapkus, and H. C. Lee, J. Cryst Growth 77, 188 (1986).
[54] H. Schlichting, Boundary Layer Theory, Mc-Graw Hill, New York, 1960.
[55] Aixtron Co. Ltd Catalog of the CS-13975 system.
[56] T. Makimoto, Y. Yamauchi, N. Kobayashi, and Y. Horikoshi, Jpn. J. Appl. Phys. 29, L207 (1990).
[57] S. L. Wright, T. N. Jackson, and R. F. Marks, J. Vac. Sci. & Technol. B8, 288 (1990).
[58] A. J. Spring Thorpe and A. Majeed, J. Vac. Sci. & Technol. B8, 266 (1990).
[59] T. Okamoto and A. Yoshikawa, Jpn. J. Appl. Phys. 30, L156 (1991).
[60] S. Nakamura, Jpn. J. Appl. Phys. 30, 1620 (1991).
[61] LayTec Co. Ltd, http://www.laytec.de.
[61] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 38, 3976 (1999).
[62] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 70, 1417 (1997).
[63]S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 72, 211 (1998).
[64]K. Uchida, K. Nishida, M. Tadano, and H. Munekata, J. Cryst. Growth 189, 270 (1998).
[65]T. Kachi, K. Tomita, K. Itoh, and H. Trando, Appl. Phys. Lett. 72, 704 (1998).
[66]T. Wang, Y. Morishima, N. Naoi, and S. Sakai, J. Cryst. Growth 213, 188 (2000)
[67]S. Sakai, T. Wang, Y. Morishima, and N. Naoi, J. Cryst. Growth 221, 334 (2000)
[68]C. H. Kuo, S. J. Chang, Y. K. Su, C. K. Wang, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. M. Tsai, and C. C. Lin, Solid-State Electronics 47, 2019 (2003)
[69]S. C. Wei, Y. K. Su, S. J. Chang, S. M. Chen, and W. L. Li, IEEE Trans. Electron Devices 52, 1104 (2005)
[70]Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, IEEE Photon. Tech. Lett. 17, No. 8, 1620 (2005).
[71]C. M. Tsai, J. K. Sheu, W. C. Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. W. Kuo, S. J. Chang, and Y. K. Su, IEEE Electron Device Lett. 26, No. 7, 464 (2005).
[72] C. H. Kuo, C. L. Yeh, P. H. Chen, W. C. Lai, C. J. Tun, J. K. Sheu, and G. C. Chi, Electrochem. Solid State Lett. 11, H269 (2008).
[73] D. D. Koleske, A. J. Fischer, A. A. Allerman, C. C. Mitchell, K. C. Cross, S. R. Kurtz, J. J. Figiel, K. W. Fullmer, and W. G. Breiland, Appl. Phys. Lett. 81, 1940 (2002)
[74] B. Heying, X. H. Wu, S. Keller, Y. Li, D. Kapolnek, B. P. Keller, S. P.
DenBaar, and J. S. Speck, Appl. Phys. Lett. 68, 643 (1996).
[75] H. M. Ng, D. Doppalapudi, and T. D. Moustakas, Appl. Phys. Lett. 73, 821 (1998).
[76] N. G. Weimann and L. F. Eastman, J. Appl. Phys. 83, 3656 (1998).
[77] C. W. Kuo, Y. K. Fu, C. H. Kuo, L. C. Chang, C. J. Tun, C. J. Pan, and G. C. Chi, J. Cryst. Growth 311, 249 (2009).
[78] P. Fini, X. Wu, E. J. Tarsa, Y. Golan, V. Srikant, S. Keller, S. P. Denbarrs, and J. S. Speck, Jpn. J. Appl. Phys. Part 1 37, 4460 (1998)
[79] X. H. Wu, D. Kapolnek, E. J. Tarsa, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. Denbarrs, and J. S. Speck, Appl. Phys. Lett. 68, 1371 (1996)
[80] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998).
[81] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 38, 3976 (1999).
[82] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 37, L1358 (1998).
[83] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996).
[84] K. P. O’Donnell, R. W. Martin, and P. G. Middleton, Phys. Rev. Lett. 82, 237 (1999).
[85] A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara, Appl. Phys. Lett. 79, 3723 (2001).
[86] Z. C. Feng, W. Liu, S. J. Chua, J. W. Yu, C. C. Yang, T. R. Yang, and J. Zhao, Thin Solid Films 498, 118 (2006).
[87] C. H. Kuo, C. W. Kuo, C. M. Chen, B. J. Pong, and G. C. Chi, Appl. Phys. Lett. 89, 191112 ( 2006).
[88] C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu, and G. C. Chi, Appl. Phys. Lett. 90, 142115 (2007).
[89] Y. T. Moon, D. J. Kim, J. S. Park, J. T. Oh, J. M. Lee, Y. W. Ok, H. Kim, and S. J. Park, Appl. Phys. Lett. 79, 599 (2001).
[90] A. Laubsch, W. Bergbauer, M. Sabathil, M. Strassburg, H. Lugauer, M. Peter, T. Meyer, G. Bruderl, J. Wagner, N. Linder, K. Strubel, and B. Hahn, Phys. Stat. Sol. C 6, S2 S885 (2009).
[91] J. Wu, W Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 80, 4741 (2002).
[92] B. D. Cullity, Elements of X-ray Diffraction, 2nd ed., Addison-Wesley, Reading, MA, (1978).
[93] C. S. Kim, H. G. Kim, C. H. Hong, and H. C. Cho, Appl. Phys. Lett. 87, 013502 (2005).
[94] A. Tabata, L. K. Teles, L. M. R. Scolfaro, L. R. Leite, A. Kharchenko, T. Frey, D. J. As, D. Schikora, K. Lischika, J. Furthmuller, and F. Bechstedt, Appl. Phys. Lett. 80, 769 (2002).
[95] R. People and J. C. Bean, Appl. Phys. Lett. 47, 322 (1985).
[96] S. Pereira, M. R. Correia, E. Pereira, C. Trager-Cowan, F. Sweeney, K. P. O’Donnel, E. Alves, N. Franco, and A. D. Sequeria, Appl. Phys. Lett. 81, 1207 (2002).
[97] R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl. Phys. Lett. 70, 1089 (1997).
[98] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, , Appl. Phys. Lett. 73, no. 10, 1370 (1998).
[99] C. A. Tan, R. F. Karlicek, Jr., M. Schurman, A. Osinsky, V. Merai, Y. Li, I. Eliashevich, M. G. Brown, J. Nering, I. Fergerson, and R. Stall, J. Cryst. Growth 195, 397 (1998).
[100] S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, Appl. Phys. Lett. 83, 4906 (2003).
[101] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 38, 3976 (1999).
[102] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. 37, L1358 (1998).
[103] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).
[104] N. F. Gardner, G. O. Mueller, Y. C. Shen, G. Chen, S. Watababe, W. Goetz, and M. R. Krames, Appl. Phys. Lett. 91, 243506 (2007).
[105]M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Peprek, and Y. Park, Appl. Phys. Lett. 91, 183507 (2007).
[106] Y. Yang, X. A. Cao, and C. Yan, IEEE Tran. Electron. Dev. 55, 1771 (2008).
[107] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, Appl. Phys. Lett. 91, 231114 (2007).
[108] Y. L. Li, Y. R. Huang, and Y. H. Lai, Appl. Phys. Lett. 91, 181113 (2007).
[109] R. A. Oliver, M. J. Kappers, C. J. Humphreys, and G. A. D. Briggs, J. Appl. Phys. 97, 013707 (2005).
[110] H. J. Chung, R. J. Choi, M. H. Kim, J. W. Han, Y. M. Park, Y. S. Kim, H. S. Park, C. S. Sone, Y. J. Park, J. K. Kim, and E. F. Schubert, Appl. Phys. Lett. 95, 241109 (2009).
[111] S. Nakamura, S. J. Pearton, and G. Fasol, The Blue Laser Diode: The complete Story, 2nd ed., Spinger, Berlin, (2000)
[112] X. A. Cao, S. F. Leboeuf, L. B. Rowland, C. H. Yan, and H. Liu, Appl. Phys. Lett. 82, 3614 (2003)
[113] L. Nistor, H. Bender, A. Vantomme, M. F. Wu, J. V. Landuyt, K. P. O’Donnell, R. Martin, K. Jacobs, and I. Moerman, Appl. Phys. Lett. 77, 507 (2000).
[114] M. G. Cheong, C. Liu, H. W. Choi, B. K. Lee, E. K. Suh, and H. J. Lee, J. Appl. Phys. 93, 4691 (2003).
[115] C. H. Kuo, Y. K. Fu, C. L. Yeh, C. J. Tun, P. H. Chen, W. C. Lai, and S. J. Chang, IEEE Photon. Technol. Lett. 21, 371 (2009).
[116] T. H. Hsueh, J. K. Sheu, W. C. Lai, Y. T. Wang, H. C. Kuo, and S. C. Wang, IEEE Photon. Technol. Lett. 21, 414 (2009).
[117] Y. S. Lin, C. C. Yan, C. Hsu, K. J. Ma, Y. Y. Chung, S. W. Feng, Y. C. Cheng, E. C. Lin, C. C. Yang, C. T. Kuo, and J. S. Tsang, J. Cryst. Growth 252, 107 (2003).
[118] Y. C. Cheng, C. M. Wu, M. K. Chen, C. C. Yang, Z. C. Feng, G. A. Li, J. R. Yang, A. Rosenauer, and K. J. Ma, Appl. Phys. Lett. 84, 5422 (2004).
[119] H. C. Lin, R. S. Lin, and J. I. Chyi, Appl. Phys. Lett. 92, 161113 (2008).
[120] S. H. Jan, C. Y. Cho, S. J. Lee, T. Y. Park, T. H. Kim, S. H. Park, S. W. Kang, J. W. Kim, Y. C. Kim, and S. J. Park, Appl. Phys. Lett. 96, 051113 (2010).
[121] C. H. Kuo, C. W. Kuo, C. M. Chen, B. J. Pong, and G. C. Chi, Appl. Phys. Lett. 89, 191112 (2006).
[122] C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu, and G. C. Chi, Appl. Phys. Lett. 90, 142115 (2007).
[123] C. H. Kuo, C. L. Yeh, P. H. Chen, W. C. Lai, C. J. Tun, J. K. Sheu, and G. C. Chi, Electrochem. Solid State Lett. 11, H269 (2008).
[124] L. Trpfer, W. Stolz, and K. Ploog, J. Appl. Phys. 66, 3217 (1989).
[125] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 80, 4741 (2002).
[126] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81, 1246 (2002).
[127] X. A. Cao, S. F. Leboeuf, L. R. Rowland, and H. Liu, J. Electron. Mater. 32, 316 (2003).
[128] X. A. Cao, S. F. Leboeuf, and T. E. Stecher, IEEE Electron Device Lett. 27, 329 (2006).
[129] P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71, 569 (1997).
[130] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370 (1998).
[131] D. I. Florescu, J. C. Ramer, D. S. Lee, and E. A. Armour, Appl. Phys. Lett. 84, 5252 (2004).
[132] H. P. D. Schenk, M. Leroux, and P. de Mierry, J. Appl. Phys. 88, 1525 (2000).
[133] Y. Yang, X. A. Cao, and C. H Yan, Phys. Status Solidi A, 195 (2009).
[134] J. Park and Y. Kawakami, Appl. Phys. Lett. 88, 202107 (2006).
[135] S. H. Park, J. Park, and E. Yoon, Appl. Phys. Lett. 90, 023508 (2007).
[136] R. A. Arif, Y. K. Ee, and N. Tansu, Appl. Phys. Lett. 91, 091110 (2007).
[137] H. Zhao, R. A. Arif, and N. Tansu, IEEE J. Sel. Top. Quantum Electron. 15, 1104 (2009).
[138] H. Zhao, G. Liu, X. H. Li, G. S. Huang, J. D. Poplawsky, S. T. Penn, V. Dierolf, and N. Tansu, Appl. Phys. Lett. 95, 061104 (2009).
[139] A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, Appl. Phys. Lett. 92, 053502 (2008).
[140] T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. Part 1 38, 3976 (1999).
[141] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett. 70, 1417 (1997).
[142] S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode, 2nd ed. (Springer, Berlin, 2000).
[143] X. Zhang, X. Wang, H. Xiao, C. Yang, J. Ran, C. Wang, Q. Hou, and J. L. Li, J. Phys. D 40, 7335 (2007).
[144] O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, Appl. Phys. Lett. 91, 132117 (2007).
[145] J. Wu, W. Walukiewich, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, J. Appl. Phys. 94, 6477 (2003).
[146] J. Wu, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
[147] M. Hori, K. Kano, T. Yamaguchi, Y. Saito, T. Araki, Y. Nanishi, N. Teraguchi, and A. Suziki, phys. stat. sol. B 234, 750 (2002).
[148] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett. 81 (2), 1246 (2002).
[149] A. Barnett, C. Honsberg, D. Kirkpatrick, S. Kurtz, D. Moore, D. Salzman, R. Schwartz, J. Gray, S. Bowden, K. Goossen, M. Haney, D. Aiken, M. Wanlass, and K. Emery, Proceedings of the Fourth World Conference on Photovoltaic Energy Conversion, Hawaii, 7-12 May 2006.
[150] A. J. Ekpunobi and A. O. E. Animalu, Superlattice Microstruct. 31, 247 (2002).
[151] D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).
[152] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, J. Gasey, B. P. Keller, U. K. Mishra, and S. P. Denbaars, Appl. Phys. Lett. 71, 2572 (1997).
[153] R. Singh, D. Doppalapudi, T. D. Moustakas, and L. T. Romano, Appl. Phys. Lett. 70, 1089 (1997).
[154] L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, Appl. Phys. Lett. 89, 111111 (2006).
[155] D. Redfield, Appl. Phys. Lett. 25, 647 (1974).
[156] E. Tybus, G. Namkoong, W. Henderson, S. Burnham, W. Doolitle, M. Cheung, and A. Cartwright, J. Cryst. Growth 288, 218 (2006).
[157] P. King, T. Veal, C. P. Jefferson, C. McConville, H. Lu, and W. Schaff, Phys. Rev. B 75, 115312 (2007).
[158] C. J. Neufeld, N. G. Toledo, S. C. Cruz, M. Iza, S. P. Denbaars, and U. K. Mishra, Appl. Phys. Lett. 93, 143502 (2008).
[159] X. Chen, K. D. Matthews, D. Hao, W. J. Schaff, and L. F. Eastman, Phys. Status Solidi A 205, 1103 (2008).
[160] P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S. Speck, S. P. Denbaars, and U. K. Mishra, Appl. Phys. Lett. 73, 975 (1998).
[161] I. Kim, H. Park, Y. Park, and T. Kim, Appl. Phys. Lett. 73, 1634 (1998).
[162] B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 93, 182107 (2008).
[163] X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, Appl. Phys. Lett. 93, 261108 (2008).
[164] R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 94, 063505 (2009).
[165] K. W. J. Barnham, and G. Duggan, J. Appl. Phys. 67, 3490 (1990).
[166] K. W. J. Barnham, B. Braun, J. Nelson, M. Paxman, C. Button, J. S. Roberts, and C. T. Foxon, Appl. Phys. Lett. 59, 135 (1991).
[167] R. Corkish, and M.A. Green, Recombination of carriers in quantum well solar cells, in: Proceedings of the 23rd PV Specialists Conference, IEEE, New York, pp. 675 (1993).
[168] K. W. J. Barnham, J. Connolly, P. Griffin, G. Haarpaintner, J. Nelson, E. Tsui, A. Zachariou, J. Osborne, C. Button, G. Hill, M. Hopkinson, M. Pate, J.S. Roberts, and T. Foxon, J. Appl. Phys. 80 (2), 1201 (1996).
[169] C. H. Kuo, C. W. Kuo, C. M. Chen, B. J. Pong, and G. C. Chi, Appl. Phys. Lett. 89, 191112 ( 2006).
[170] C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu, and G. C. Chi, Appl. Phys. Lett. 90, 142115 (2007).
[171] D. Holect, P. M. F. J. Costa, M. J. Kappers, and C. J. Humphreys, J. Cryst. Growth 303, 314 (2007).
[172] X. H. Wang, H. Q. Jia, L. W. Guo, Z. G. Xing, Y. Wang, X. J. Pei, J. M. Zhou, and H. Chen, Appl. Phys. Lett. 91, 161912 (2007).
[173] Z. Z. Chen, P. Liu, S. L. Qi, K. Xu, Z. X. Qin, Y. Z. Tong, T. J. Yu, X. D. Hu, and G. Y. Zhang, J. Cryst. Growth 298, 731 (2007).
[174] J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai, and L. C. Peng, IEEE Electron Device Lett. 30, 225 (2009).
[175] F. Capasso, G. Margaritondo, Heterojunction Band Discontinuities: Physics and Device Applications, North-Holland, Netherlands, 1987.
[176] J. M. Shah, Y. -L. Li, Th. Gessmann, E. F. Schubert, J. Appl. Phys. 94, 2627 (2003).
[177] X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. Veboeuf, J. Kretchmer, D.
Walker, IEEE Electron. Dev. Lett. 23, 535 (2002).
[178] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, Appl. Phys. Lett. 66, 1249 (1995).
[179] S. M. Sze, Physics of Semiconductor Devices 2nd edition, New York:Willey (1981)
[180] Martin A. Green, Solar cells operating principles, technology, and system applications, Prentics-Hall, Inc., Englewood Cliffs, N. J. 07632, (1982) p.96.
[181] M. Peter, A. Laubsch, P. stauss, A. Walter, J. Baur, and B. Hahn, Phys. Stat. Sol. C, 5, 2050 (2008).
[182] Y. D. Qi, H. Liang, D. Wang, Z. D. Lu, W. Tand, and K. M. Lau, Appl. Phys. Lett. 86, 101903 (2005).
[183] Y. H. Cho, S. N. Lee, H. S. Kwack, J. Y. Kim, K. S. Lim, H. M. Kim, T. W. Kang, S. N. Lee, M. S. Seon, O. H. Nam, and Y. J. Park, Appl. Phys. Lett. 83, 2578 (2003).
[184] C. H. Kuo, C. L. Yeh, P. H. Chen, W. C. Lai, C. J. Tun, J. K. Sheu, and G. C. Chi, Electrochem. Solid State Lett. 11, H269 (2008).
指導教授 郭政煌(Cheng-Huang Kuo) 審核日期 2010-3-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明