博碩士論文 952906008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:34.239.150.167
姓名 王聖凱(SHENG-KAI WANG)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以Sol-Gel法製備高濃度TiO2用於染料敏化太陽能電池光電極之特性研究
(Study of characteristics of Dye-sensitized solar cell electrode with high concentrated TiO2 produced by Sol-Gel method)
相關論文
★ 腦電波傅利葉特徵頻譜之研究★ 光電星雲生物晶片之製作
★ 電場控制器光學應用★ 手機照相鏡頭設計
★ 氣功靜坐法對於人體生理現象影響之研究★ 針刺及止痛在大鼠模型的痛覺量測系統
★ 新光學三角量測系統與應用★ 離軸式光學變焦設計
★ 腦電波量測與應用★ Fresnel lens應用之量測
★ 線型光學式三角量測系統與應用★ 非接觸式電場感應系統
★ 應用田口法開發LED燈具設計★ 巴金森氏症雷射線三角量測系統
★ 生產線上之影像量測系統★ 眼動控制系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 二十一世紀的今天,全世界正面臨著能源危機的問題,科學家們正在努力的尋找替代能源,期望能解決這個問題。其中,太陽能電池為最被看好的替代能源之一。本研究的目的為利用溶膠凝膠法製備奈米級二氧化鈦光電極,並分析染料敏化太陽能電池之效能。實驗的方法採用「溶膠凝膠法」,前驅物為金屬鹽類「四氯化鈦」,利用旋轉塗佈的方式製作出奈米級二氧化鈦薄膜,製備染料敏化太陽能電池之透明電極。溶膠凝膠法在加熱過程中,我們利用光強穿透率間接找出最佳的加熱時間,以DLS、XRD得知在加熱13個小時的TiO2粒子擁有最小的粒徑約35nm,且有銳鈦礦的結晶產生。染料敏化太陽能電池效率分析部份,我們採用三種方式製作透明光電極。兩組以Sol-Gel塗佈,一組以Sol-Gel混合商用P-25粉體,膜厚依序為:117.2 nm、459.4 nm、2 μm。結果顯示以Sol-Gel混合商用P-25粉體效率最高,且發現此方式可以很穩固的固定在基材上。
摘要(英) Today, in twenty-first century, the whole world currently faces the energy crisis and scientists are exerting themselves to solve it by seeking alternative energies. Among all the alternatives, the solar cell is the most promising one. The purpose of our research is to make solar electrode of nano-scale TiO2 (Titanium dioxide) by Sol-Gel method and to increase the efficiency of Dye-sensitized solar cell(DSSC). This processing used Titaniumchlorid (TiCl4) forerunner to manufacture TiO2 coating liquid. The spin coating method is taken to produce the nano-scale TiO2 thin film which can be used to make DSSC. During the heating process of Sol-Gel method, the transmittance of light intensity is utilized to find heating time which gives the best result. By measuring through DLS and XRD, we can have TiO2 particles whose size with an average of 35nm at a heating time of 13 hours and the crystallized anatase will be produced. For the analysis of efficiency of DSSC, three ways are adopted to fabricate transparent photoelectrodes while two methods are based on Sol-Gel spin coating and the other one mixes commercial P-25 power with Sol-Gel. The membrane thicknesses of three methods are 117.2nm, 459.4nm and 2um, respectively. The result demonstrates that the Sol-Gel mixed with commercial P-25 powder having the highest efficiency and can be firmly attached to the base material.
關鍵字(中) ★ 二氧化鈦
★ 染料敏化太陽能電池
★ 電雙層
★ 散射
★ 廷得耳
★ 溶膠凝膠
關鍵字(英) ★ Tyndall
★ Electrical double layer
★ DSSC
★ TiO2
★ sol-gel
★ dye-sensitized solar cell
論文目次 摘要 ……………………………………………………………………I
Abstract………………………………………………………………II
致謝 …………………………………………………………………III
目錄……………………………………………………………………IV
圖目錄…………………………………………………………………VI
表目錄………………………………………………………………VIII
第一章 前言
1-1 研究動機與目標……………………………………………1
第二章 研究背景
2-1-1 TiO2特性 …………………………………………………4
2-1-2 nano –TiO2光觸媒材料的光反應制……………………7
2-2溶膠-凝膠法 (Sol-Gel) ………………………………………10
2-2-1 溶膠-凝膠製程與原理……………………………………10
2-2-2 溶膠-凝膠奈米微粒之光學性質…………………………12
2-2-3溶膠-凝膠製程的優缺點 …………………………………17
2-2-4影響TiO2溶膠-凝膠反應速率的因子 ……………………18
2-2-5 動態散射光粒徑分析 (DLS) ……………………………19
2-3 染料敏化太陽能電池的概述 …………………………………21
2-3-1 DSSC基本組成結構及工作原理 …………………………21
2-3-2 透明導電玻璃 ……………………………………………24
2-3-3 TiO2光電極的製備 ………………………………………25
2-3-4 染料(Dye)…………………………………………………27
2-3-5 電解液(Electrolyte)……………………………………29
2-3-6鉑(Pt)對電極………………………………………………29
2-4太陽電池總效率的計算…………………………………………30
第三章 實驗儀器與實驗分析方法
3-1 製備奈米級TiO2光觸媒結晶懸浮液…………………………33
3-2 高濃度TiO2 sol-gel之加熱時間與粒徑變化及晶相生成實驗 …………………………………………………………………………35
3-3高濃度TiO2 sol-gel之光觸媒效率……………………………41
3-4 TiO2光電極薄膜製備與分析 …………………………………48
3-5 DSSC的組裝與特性分析 ………………………………………52
第四章 結論與未來工作
4-1結論………………………………………………………………62
4-2未來工作…………………………………………………………66
參考文獻 ………………………………………………………………67
參考文獻 [1] Y. Tsunomura, Y. Yoshimine, M. Taguchi et al., “Twenty-two percent efficiency HIT solar cell,” Solar Energy Materials and Solar Cells, vol. 93, no. 6-7, pp. 670-673, 2009.
[2] B. O'Regan, M. Gratzel, and D. Fitzmaurice, “Optical electrochemistry I: steady-state spectroscopy of conduction-band electrons in a metal oxide semiconductor electrode,” Chemical Physics Letters, vol. 183, no. 1-2, pp. 89-93, 1991.
[3] L. M. Peter, K. Lobato, and P. J. Cameron, “Analysis of Photovoltage Decay Transients in Dye-Sensitized Solar Cells - Walker, Alison B,” The Journal of Physical Chemistry B, vol. 110, no. 50, pp. 25504-25507, 2006.
[4] B. A. Gregg, F. Pichot, S. Ferrere et al., “Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces,” The Journal of Physical Chemistry B, vol. 105, no. 7, pp. 1422-1429, 2001.
[5] S. Y. Huang, G. Schlichthorl, A. J. Nozik et al., “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells,” The Journal of Physical Chemistry B, vol. 101, no. 14, pp. 2576-2582, 1997.
[6] M. Bailes, P. J. Cameron, K. Lobato et al., “Determination of the Density and Energetic Distribution of Electron Traps in Dye-Sensitized Nanocrystalline Solar Cells,” The Journal of Physical Chemistry B, vol. 109, no. 32, pp. 15429-15435, 2005.
[7] D. G.-c. C. Chien-chun Lin, “Influence on the performance of dye-sensitized solar cells with a TiO2 compact layer,” Department of Physics, National Central University, 2008.
[8] P. Kofstad, P. B. Anderson, and O. J. Krudtaa, “Oxidation of titanium in the temperature range 800-1200°C ” Journal of the Less Common Metals, vol. 3, no. 2, pp. 89-97, 1961.
[9] “ Phase Diagrams for Ceramists Figure,” The American Ceramic Society, vol. Inc, no. 76 pp. 4150, 1975.
[10] A. Fujishima, and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, no. 5358, pp. 37-38, 1972.
[11] M. Asomoza, M. P. Dom?nguez, S. Sol?s et al., “ Calorimetric study of the sol-gel silica gelation stage: Effect of gelation pH. Materials Letters,” Materials Letters, vol. 33, no. 3-4, pp. 153-160, 1997.
[12] H. J. Abrahams, and A. Dubner, “A simple and permanent Tyndall cone apparatus,” Journal of Chemical Education, vol. 20, no. 2, pp. 61, 1943.
[13] W. Kaiser, “Electrical and Optical Properties of Heat-Treated Silicon,” Physical Review, vol. 105, no. 6, pp. 1751, 1957.
[14] A. J. D. A. J. Cox, and Jennifer Linden, “An experiment to measure Mie and Rayleigh total scattering cross sections,” American Association of Physics Teachers., 2002.
[15] 林振隆, “奈米導論,” 學富文化事業有限公司, pp. 35-36, 2002.
[16] T. Tseng, J. Huang, J. Lin et al., “Rheological properties of the aqueous zirconia/colloidal zirconia binder sol system,” Journal of Materials Science, vol. 24, no. 8, pp. 2735-2738, 1989.
[17] B. Jiang, H. Yin, T. Jiang et al., “Hydrothermal synthesis of rutile TiO2 nanoparticles using hydroxyl and carboxyl group-containing organics as modifiers,” Materials Chemistry and Physics, vol. 98, no. 2-3, pp. 231-235, 2006.
[18] H. Cheng, J. Ma, Z. Zhao et al., “Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles,” Chemistry of Materials, vol. 7, no. 4, pp. 663-671, 1995.
[19] J.-P. Jalava, L. Heikkila, O. Hovi et al., “Structural Investigation of Hydrous TiO2 Precipitates and Their Aging Products by X-ray Diffraction, Atomic Force Microscopy, and Transmission Electron Microscopy,” Industrial & Engineering Chemistry Research, vol. 37, no. 4, pp. 1317-1323, 1998.
[20] C.-C. Lin, “Fabrication of Photoelectrodes for Dye-Sensitized Solar Cells : Electrostatic Layer-by-Layer Assembly Technique,” National Cheng Kung University, pp. p29, 2004.
[21] B. O'Regan, and M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737-740, 1991.
[22] D. Matthews, P. Infelta, and M. Gratzel, “Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes,” Solar Energy Materials and Solar Cells, vol. 44, no. 2, pp. 119-155, 1996.
[23] M. Gratzel, “Photoelectrochemical cells,” Nature, vol. 414, no. 6861, pp. 338-344, 2001.
[24] G.-S. Heo, I.-G. Gim, J.-W. Park et al., “Effects of substrate temperature on properties of ITO-ZnO composition spread films fabricated by combinatorial RF magnetron sputtering,” Journal of Solid State Chemistry, vol. 182, no. 10, pp. 2937-2940, 2009.
[25] 翁暢健, “壓克力/二氧化鈦複合材料的製備與性質研究,” 私立中原大學, pp. 碩士論文, 2002.
[26] M.-G. Fan, L. Yu, and W. Zhao, "Fulgide Family Compounds: Synthesis, Photochromism, and Applications," Organic Photochromic and Thermochromic Compounds, pp. 141-206, 2002.
[27] D. C.-K. J. Wen-Chen Tsai, “Synthesis and Studies of the Recording Dyes for DVD-R,” Department of Applied Chemistry Chaoyang University of Technology, vol. Thesis for the Degree of Master, 2003.
[28] Y.-L. Cheng, “Sensitization of Nanocrystalline TiO2 Solar Cell by Using Organic Dye Cocktails,” National Cheng Kung University pp. p22~p24, 2005.
[29] H. W. Osterried K., Bruckner H.D., Martin R., , “Precursor Preparation for the Production of Neutral Metal Oxide Sols,” U.S. Patent, pp. 5,389,361,1995.
[30] H. U. Bruckner H.D., Heyland A., , “Photostabilization of Titanium Dioxide Sols,” U.S. Patent, pp. 5,698,205, 1997.
[31] A. Y. Sato G., Tanaka H., Hiraoka S.,, “Titanium Dioxide Sol and Process for Preparation Thereof,” U.S. Patent pp. 5,403,513, 1995.
[32] M. K. Nakamura M., Tanaka M., Nishizawa Y, “Titanium Dioxide Ceramic Paint and Methods of Producing Same Producing Same,” U.S. Patent, pp. 5,795,251, 1998.
[33] S. A. Takahashi H., Hattori M., , “Dendrite or Asteroidal Titanium Dioxide Micro-Particles,” U.S. Patent, pp. 5,536,448, 1996.
[34] O. J. Yanagisawa K., “Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature,” J. Phys. Chem. B, vol. 103, pp. 7781-7787, 1999
[35] P. S. D. Kim S.J., Jeong Y.H.,, “Homogeneous Precipitation of TiO2 Ultrafine Powders from Aqueous TiOCl2 Solution,” J. Am. Ceram. Soc, vol. 82, pp. 927-932, 1999.
[36] W. D. Wu X., Yang S, “Preparation and Characterization of Stearate-Capped Titanium Dioxide Nanoparticles,” J. Colloid Interface Sci, vol. 222, pp. 37-40, 2000.
[37] K. L. G. Ziam T.M., Lyakhov N.Z., “Synthesis and Physicochemical Properties of Hydrated Titanium Dioxide Sol,” Colloid J., vol. 60, pp. 431-434, 1998.
[38] G. L. Zhang Q., Guo J.,, “Effect of Hydrolysis Conditions on Morphology and Crystallization of Nanosized TiO2 Powder,” J. Eur. Ceram. Soc, vol. 20, pp. 2153-2158, 2000.
[39] S.-C. L. Hsing-I Hsiang, “Effects of aging on the phase transformation and sintering properties of TiO2 gels,” Materials Science and Engineering, no. A 380, pp. 67–72, 2004
[40] A. Kitiyanan, and S. Yoshikawa, “The use of ZrO2 mixed TiO2 nanostructures as efficient dye-sensitized solar cells' electrodes,” Materials Letters, vol. 59, no. 29-30, pp. 4038-4040, 2005.
指導教授 張榮森(Rong -Seng Chang) 審核日期 2010-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明