博碩士論文 953202009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:35.172.233.2
姓名 陳家祥(Chia-hsiang Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 含斜拉鋼筋之中空複合構件於三維載重下之耐震行為
(Seismic Performance of Hollow Composite Members with Inclined Bars Under General Loading)
相關論文
★ 隅撐鋼結構耐震性能研究★ 應用不同尺度隅撐之鋼結構耐震性能研究
★ 雙孔中空複合構件耐震性能研究★ 具挫屈控制機制之隅撐構架耐震行為研究
★ 圓形中空複合構材耐震性能研究★ 多層多跨隅撐鋼結構之耐震性能研究
★ 隅撐抗彎構架之性能設計研究與分析★ 配置開槽消能鋼板之預力式橋柱耐震性能研究
★ 具鋼板消能裝置之隅撐結構耐震行為研究★ 中空鋼骨鋼筋混凝土耐震補強有效性研究
★ 具自復位隅撐鋼結構耐震性能研究★ 具自復位梁柱接頭隅撐鋼結構耐震性能研究
★ 具消能隅撐內框架之構架耐震性能研究★ 具摩擦消能機制之Y型隅撐鋼結構耐震性能研究
★ 全鋼線網圍束中空複合構材之扭轉撓曲行為研究★ 多層多跨具自復位梁柱接頭隅撐構架之耐震性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究針對中空複合構件於三維載重下之承載行為進行探討,主要探討參數為斷面深寬比、三維載重大小與是否配置斜拉鋼筋,研究中針對22根中空複合構件進行組合反覆載重試驗,以評估此類構件之耐震性能。
研究結果顯示,試體於三維載重下,因側向彎矩作用,試體之勁度、極限強度及能量消散皆有顯著衰減,研究中除針對三維載重下之強度互制關係提供建議公式,亦針對斜拉鋼筋應用於複合構件承載性能提升之可行性進行探討。試驗結果證實,斜拉鋼筋不僅對試體抗扭能力有所提升,其對構件在組合載重下之極限後強度與勁度的維持,以及能量消散皆有顯著的貢獻,此顯示斜拉鋼筋應用於中空複合構件耐震設計具有相當之可行性。
摘要(英) This study investigated the performance of hollow composite members, and the possibility of cross inclined bars in performance improvement for members subjected to earthquake-induced loads. A series of tests on composite members subjected to bending and torsion were conducted. Major parameters studied included the sectional aspect ratios, magnitudes of three-dimensional loads and the placement of cross inclined bars. The test results obtained from the combined load tests were used to define the relationship among member performance, sectional aspect ratios, and the load combinations. The test results showed that the bearing capacity of members significantly decreased when members were under three-dimensional loads. Comparisons of test results also showed that the stiffness and ductility of the strengthened members were significantly increased. Enhancement in energy dissipation further validated the applicability of inclined bars to the performance improvement of hollow composite members.
關鍵字(中) ★ 斜拉鋼筋
★ 斷面深寬比
★ 三維載重
關鍵字(英) ★ inclined bars
★ sectional aspect ratio
★ three-dimensional loads
論文目次 第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 1
1-3 研究方向與內容 3
第二章 文獻回顧 5
2-1 國內外相關研究 5
2-1-1 混凝土之圍束 5
2-1-2 混凝土之受扭特性 6
2-1-3 混凝土之多軸受力互制行為 6
2-1-4 中空鋼結構斷面之承載特性 7
2-1-5 複合構件之多軸受力互制行為 8
2-2 國內外SRC相關規範概述 10
2-2-1 美國ACI規範相關規定 10
2-2-2 美國AISC-LRFD規範相關規定 10
2-2-3 日本AIJ規範相關規定 11
2-2-4 台灣SRC規範相關規定 12
第三章 相關理論闡述 13
3-1 側向彎矩施加所需偏心距之計算 13
3-2 複合構材之極限彎矩強度 14
3-3 斷面之彎矩-曲率關係 15
3-4 鋼管提供之扭矩強度 16
3-5 斜拉鋼筋提供之扭矩強度 17
3-6 鋼筋混凝土提供之扭矩強度 18
3-7 等效撓曲勁度 18
3-8 破壞方程式 20
第四章 實驗規劃與流程 21
4-1 實驗規劃 21
4-2 試體編號與實驗參數 22
4-3 試體製作 23
4-4 實驗設備 25
4-5 應變計量測 26
4-6 實驗方法與步驟 27
第五章 實驗觀察與破壞模式 29
5-1 實驗觀察 29
5-1-1 單向純彎矩試驗(M) 29
5-1-2 反覆彎矩加軸力試驗(MP) 31
5-1-3 反覆小偏心加軸力試驗(SEP) 32
5-1-4 反覆大偏心加軸力試驗(LEP) 33
5-1-5 含斜拉鋼筋之反覆大偏心加軸力試驗(LEP-3) 34
5-1-6 反覆小偏心三維載重試驗(SEP25) 36
5-1-7 反覆大偏心三維載重試驗(LEP50) 38
5-1-8 含斜拉鋼筋之反覆大偏心三維載重試驗(LEP50-3) 40
5-1-9 反覆純扭矩載重試驗(T) 41
5-2 破壞模式比較 43
5-2-1 單向純彎矩試驗(M) 43
5-2-2 反覆彎矩加軸力試驗(MP) 43
5-2-3 反覆純扭矩載重試驗(T) 44
5-2-4 反覆小偏心加軸力試驗(SEP) 44
5-2-5 反覆大偏心加軸力試驗(LEP) 45
5-2-6 反覆小偏心三維載重試驗(SEP25) 46
5-2-7 反覆大偏心三維載重試驗(LEP50) 46
第六章 結果分析與討論 49
6-1 強度分析 49
6-1-1 單向純彎試驗分析 49
6-1-2 極限彎矩強度 49
6-1-3 極限扭矩強度 50
6-2 強度衰減 50
6-2-1 偏心載重下之複合構材強度 50
6-2-2 三維載重下之複合構材強度 52
6-2-3 強度遞減率 56
6-3 斜拉鋼筋對試體圍束之助益 58
6-4 勁度衰減 60
6-5 能量消散 62
6-5-1 構件承受偏心載重 62
6-5-2 構件承受三維載重 62
6-5-3 斜拉鋼筋對能量消散影響 63
6-6 斜拉鋼筋有效性探討 64
第七章 結論與建議 67
7-1 結論 67
7-2 建議 68
參考文獻.. 69
參考文獻 [1]Legeron, F. and Paultre, P., “Behavior of high-strength concrete columns under cyclic flexure and constant axial load”, ACI Structural Journal, Vol. 97, No. 4, pp. 591-601, 2000.
[2]Galano, L. and Vignoli, A., “Seismic Behavior of Short Coupling Beams with Different Reinforcement Layouts”, ACI Structural Journal, Vol. 97, No. 6, pp. 876-885, 2000.
[3]Bing, L., Park, R. and Tanaka, H., “Stress-strain behavior of high-strength concrete confined by ultra-high and normal-strength transverse reinforce- ments”, ACI Structural Journal, Vol. 98, No. 3, pp. 395-406, 2001.
[4]Susantha, K. A. S., Ge, H. and Usami, T., “ Uniaxial stress-strain relation- ship of concrete confined by various shaped steel tubes”, Engineering Structures, Vol. 23, Iss. 10, pp. 1331-1347, 2001.
[5]Chung, H. S., Yang, K. H., Lee, Y. H. and Eun, H. C., “Stress-strain curve of laterally confined concrete”, Engineering Structures, Vol. 24, Iss. 9, pp. 1153-1163, 2002.
[6]Koutchoukali, N. E. and Belarbi, A., “Torsion of high-strength reinforced concrete beams and minimum reinforcement requirement”, ACI Structural Journal, Vol. 98, Iss. 4, pp. 462-469, 2001.
[7]Chiu, H. J., Fang, I. K., Young, W. T. and Shiau, J. K., “Behavior of reinforc -ed concrete beams with minimum torsional reinforcement”, Engineering Structures, Vol. 29, Iss. 9, pp. 2193-2205, 2007.
[8]Rodriguez, J. A. and Aristizabal-Ochoa, J. D., “Biaxial interaction diagrams for short RC columns of any cross section”, Journal of Structural Engineer- ing-ASCE, Vol. 125, Iss. 6, pp. 672-683, 1999.
[9]Kim, J. K. and Lee, S. S., “The behavior of reinforced concrete columns subjected to axial force and biaxial bending”, Engineering Structures, Vol. 22, Iss. 11, pp. 1518-1528, 2000.
[10]Hong, H. P., “Strength of slender reinforced concrete columns under biaxial bending”, Journal of Structural Engineering-ASCE, Vol. 127, Iss. 7, pp. 758-762, 2001.
[11]Fafitis, A., “Interaction surfaces of reinforced-concrete sections in biaxial bending”, Journal of Structural Engineering-ASCE, Vol. 127, Iss. 7, pp. 840-846, 2001.
[12]Qiu, F. W., Li, W. F., Pan, P. and Qian, J. R., “Experimental tests on rein- forced concrete columns under biaxial quasi-static loading”, Engineering Structures, Vol. 24, Iss. 4, pp. 419-428, 2002.
[13]Bonet, J. L., Miguel, P. F., Fernandez, M. A and Romero, M. L., “Analyti- cal approach to failure surfaces in reinforced concrete sections subjected to axial loads and biaxial bending”, Journal of Structural Engineering-ASCE, Vol. 130, Iss. 12, pp. 2006-2015, 2004.
[14]Bajaj, A. S. and Mendis, P., “New method to evaluate the biaxial interact- tion exponent for RC columns”, Journal of Structural Engineering-ASCE, Vol. 131, Iss. 12, pp. 1926-1930, 2005.
[15]Tsuchiya, S., Mackawa K. and Kawashima K., “Three-dimensional cyclic behavior simulation of RC columns under combined flexural moment and torsion coupled with axial and shear forces”, Journal of Advanced Con- crete Technology, Vol. 5, Iss. 3, pp. 409-421, 2007.
[16]Tirasit, P. and Kawashima, K., “Seismic performance of square reinforced concrete columns under combined cyclic flexural and torsional loadings”, Journal of Earthquake Engineering, Vol. 11, Iss. 3, pp. 425-452, 2007.
[17]Nakashima, M. and Liu, D. W., “Instability and complete failure of steel columns subjected to cyclic loading”, Journal of Engineering Mecha- nics-ASCE, Vol. 131, Iss. 6, pp. 559-567, 2005.
[18]Hsu, H. L. and Tsao, J. W., “Flexural-torsional performance of thin-walled steel hollow box columns subjected to a cyclic eccentric load”, Thin- Walled Structures, Vol. 45, Iss. 2, pp. 149-158, 2007.
[19]Salem, A. H., El. Aghoury, M., El. Dib, F. F. and Hanna, M. T., “Strength of biaxially loaded slender I-section beam-columns”, Canadian Journal of Civil Engineering, Vol. 34, Iss. 2, pp. 219-227, 2007.
[20]Guerrero, N., Marante, M. E., Picon, R. and Florez-Lopez, J., “Model of local buckling in steel hollow structural elements subjected to biaxial bending”, Journal of Constructional Steel Research, Vol. 63, Iss. 6, pp. 779-790, 2007.
[21]Ricles, J. M. and Paboojian, S. D., “Seismic performance of steel encased composite columns”, Journal of Structural Engineering-ASCE, Vol. 120, Iss. 8, pp. 2474-2494, 1994.
[22]Mirza, S. A., Hyttinen, V. and Hyttinen, E., “Physical tests and analyses of composite steel-concrete beam-columns”, Journal of Structural Enginee- ring-ASCE, Vol. 122, Iss. 11, pp. 1317-1326, 1996.
[23]El-Tawil, S. and Deierlein, G. G., “Strength and ductility of concrete encased composite columns”, Journal of Structural Engineering-ASCE, Vol. 125, Iss. 9, pp. 1009-1019, 1999.
[24]Lee, T. K. and Pan, A. D. E., “Analysis of composite beam-columns under lateral cyclic loading”, Journal of Structural Engineering-ASCE, Vol. 127, Iss. 2, pp. 186-193, 2001.
[25]Munoz, P. R. and Hsu, C. T. T., “Behavior of biaxially loaded concrete- encased composite columns”, Journal of Structural Engineering-ASCE, Vol. 123, Iss. 9, pp. 1163-1171, 1997.
[26]Chen, S. F., Teng, J. G. and Chan, S. L., “Design of biaxially loaded short composite columns of arbitrary section”, Journal of Structural Engineer- ing-ASCE, Vol. 127, Iss. 6, pp. 678-685, 2001.
[27]Lakshmi, B. and Shanmugam, N. E., “Nonlinear analysis of in-filled steel- concrete composite columns”, Journal of Structural Engineering-ASCE, Vol. 128, Iss. 7, pp. 922-933, 2002.
[28]Hsu, H. L. and Liang, L. L., “Performance of hollow composite members subjected to cyclic eccentric loading”, Earthquake Engineering & Struc- tural Dynamics, Vol. 32, Iss. 3, pp. 443-461, 2003.
[29]Inai, E., Mukai, A., Kai, M., Tokinoya, H., Fukumoto, T. and Mori, K., “Behavior of concrete-filled steel tube beam columns”, Journal of Struc- tural Engineering-ASCE, Vol. 130, Iss. 2, pp. 189-202, 2004.
[30]Hsu, H. L., Hsieh, J. C. and Juang, J. L., “Seismic performance of steel- encased composite members with strengthening cross-inclined bars”, Jour- nal of Constructional Steel Research, Vol. 60, Iss. 11, pp. 1663-1679, 2004.
[31]Yang, C., Cai, J., Wu, Y., He, J. G. and Chen, H. F., “Behaviors of box- shape steel reinforced concrete composite beam”, Structural Engineering and Mechanics, Vol. 22, Iss. 4, pp. 419-432, 2006.
[32]Tikka, T. K. and Mirza, S. A., “Nonlinear equation for flexural stiffness of slender composite columns in major axis bending”, Journal of Structural Engineering-ASCE, Vol. 132, Iss. 3, pp. 387-399, 2006.
[33]Dundar, C., Tokgoz, S., Tanrikulu, A. K. and Baran, T., “Behaviour of reinforced and concrete-encased composite columns subjected to biaxial bending and axial load”, Building and Environment, Vol. 43, Iss. 6, pp. 1109-1120, 2008.
[34]Tan, E. L. and Uy, B., “Experimental study on straight composite beams subjected to combined flexure and torsion”, Journal of Constructional Steel Research, Vol. 65, Iss. 4, pp. 784-793, 2009.
[35]Hsu, H. L., Jan, F. J. and Juang, J. L., “Performance of composite mem- bers subjected to axial load and bi-axial bending”, Journal of Construc- tional Steel Research, Vol. 65, Iss. 4, pp. 869-878, 2009.
[36]ACI, “Buildings code requirements for structural concrete (ACI 318-02) and commentary (ACI 318R-02)”, American Concrete Institute, Farming- ton Hills, Michigan, 2002.
[37]AISC, “Load and resistance factor design specification for structural steel Buildings”, Chicago, 1999.
[38]AIJ, “Standards for Structural Calculation of Steel Reinforced Concrete Structures”, Tokyo, 1993.
[39]內政部營建署,鋼骨鋼筋混凝土構造設計規範與解說,2004。
[40]洪明德,扭矩作用下之高強度中空鋼骨鋼筋混凝土耐震行為研究,國立中央大學,碩士論文,2007。
[41]莊佳霖,鋼骨鋼筋混凝土梁遲滯模式及耐震行為研究,國立中央大學,博士論文,2006。
[42]中華民國結構工程學會,鋼結構設計手冊-極限設計法,科技圖書,台北市,2003。
指導教授 許協隆(Hsieh-Lung Hsu) 審核日期 2009-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明