博碩士論文 953202023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.144.124.232
姓名 蕭弘典(Hung-Dian Shiau)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 橫向等向性岩石熱傳導係數量測及誤差分析
(Measuring thermal conductivity of transversely isotropic rock and error analysis)
相關論文
★ 花蓮溪安山岩含量之悲極效應研究★ 層狀岩盤之承載力
★ 海岸山脈安山岩之鹼-骨材反應特性及抑制方法★ 集集大地震罹難者居住建築物特性調查分析
★ 岩石三軸室應變量測改進★ 傾斜互層地層之承載力分析
★ 花蓮溪安山岩骨材之鹼反應行為及抑制方法★ 混成岩模型試體製作與體積比量測
★ 台灣骨材鹼反應潛能資料庫建置★ 平台式掃描器在影像擷取及長度量測之應用
★ 溫度及鹽水濃度對壓實膨潤土回脹性質之影響★ 鹼骨材反應引致之破裂行為
★ 巨觀等向性混成岩製作表面影像與力學性質★ 膨潤土與花崗岩碎石混合材料之熱傳導係數
★ 邊坡上基礎承載力之數值分析★ 鹼-骨材反應引致裂縫之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以熱探針法進行橫向等向性岩石的熱傳導係數量測,同時進行超音波波速的量測,為了提高熱探針法的精準度,並比較其關係。故於量測熱傳導係數前先以誤差傳播理論對熱探針法進行標準差的評估,並針對原始量測資料,對量測結果進行改良加權移動平均,減少量測雜訊對結果產生的影響。
實驗結果顯示,誤差傳播的理論可以求得熱傳導係數標準差。此標準差可應用於設計實驗參數,對實驗參數進行最佳化配置。對熱傳導係數影響最大的誤差為量測雜訊,可影響熱傳導係數達59 %以上。將數據透過改良加權移動平均法的處理後,使雜訊對熱傳導係數的影響降至9 %。於改良的過程中,發現若是熱傳導係數大的樣本,量測雜訊對熱傳導係數的影響越大。故若樣本的熱傳導係數越大,其量測雜訊的影響必需要減少,否則量測所得的熱傳導係數會有偏差。
於橫向等向性岩石的量測結果發現,本研究中的橫向等向性岩石,其平行片理方向的熱傳導係數約為垂直片理方向的熱傳導係數的兩倍,最快超音波波速為最慢超音波波速的兩倍以上。正交方向量測得的熱傳導係數比例,與最快超音波波速及最慢超音波波速比例相接近。
摘要(英) The subject of this research is using thermal probe method to measure the thermal conductivity of transversely isotropic rock while P-wave velocity at different angles is also measured. In order to improve the precision of thermal probe method, error propagation theory is used to estimate the standard deviation of measured results. A refined weighted moving average algorithm is applied to reduce the effect of noise from measuring.
The value of standard deviation can be used to optimize experimental parameter for thermal probe method. For thermal conductivity, measurement noise affects the most, up to 59% rising of the standard deviation. Using a refined weighted moving average algorithm to process experimental data, the affection on the noise from measuring will reduce to 9%. The result of refined weighted moving average algorithm shows the effect of measurement noise is larger for a sample with higher thermal conductivity than a sample with lower thermal conductivity. Therefore, if a sample has higher thermal conductivity, the affection on noise must be reduced in order to maintain accuracy.
For the measurement on transversely isotropic rock in the study, the thermal conductivity of parallel isotropic plane is about twice of vertical isotropic plane in transversely isotropic rock. The maximum P-wave velocity is more than twice of the minimum P-wave velocity. On measurements of a set of orthogonal directions, the ratio of thermal conductivity is almost the same with the ratio of P-wave velocity.
關鍵字(中) ★ 熱傳導係數
★ 橫向等向性
★ 熱探針量測法
★ 誤差傳播
★ 移動平均
關鍵字(英) ★ Thermal Conductivity
★ Transversely Isotropic
★ Thermal Probe Method
★ Error Propagation
★ Moving Average
論文目次 目 錄
第1章 緒論 1
1.1 研究背景 1
1.2 研究目的 1
1.3 研究方法 1
1.4 論文架構 2
1.5 論文流程圖 3
第2章 文獻回顧 4
2.1 岩石異向性 4
2.1.1 定義 4
2.1.2 成因 4
2.1.3 異向性岩石的力學行為 5
2.1.4 橫向等向性岩石 7
2.2 基本熱學 8
2.3 熱傳導係數的定義 9
2.4 量測熱傳導係數的方法 10
2.4.1 穩態熱傳導係數量測方法 10
2.4.2 暫態熱傳導係數量測方法 11
2.4.3 熱探針法、分割棒法、與暫態平面法之比較 15
2.4.4 穩態及暫態量測熱傳導係數方法比較 17
2.5 異向性岩石熱傳導係數 18
2.6 影響岩石熱傳導係數的性質 20
2.7 與熱傳導係數相關性質 23
2.8 橫向等向性岩石熱傳導係數 25
2.9 含水量與超音波波速關係 29
2.10 誤差分析 30
2.10.1 量測誤差 30
2.10.2 誤差處理 31
2.11 實驗雜訊 32
2.11.1 濾除雜訊-簡易移動平均 32
2.11.2 濾除雜訊-加權移動平均 33
第3章 實驗規劃 34
3.1 試驗材料 34
3.2 熱傳導係數量測 37
3.2.1 實驗儀器 37
3.3 橫向等向性岩石熱傳導係數 41
3.3.1 試驗儀器 41
3.3.2 試驗步驟 42
3.4 含水量對熱傳導係數的影響試驗 45
3.4.1 試驗步驟 45
3.5 誤差分析 46
3.5.1 計算誤差 46
3.5.2 參數設計-電壓 47
3.5.3 參數設計-溫差及時間間隔 47
3.6 熱探針法的雜訊 48
3.6.1 雜訊大小 48
3.6.2 雜訊濾除 49
3.6.3 雜訊濾除改正-改良加權移動平均 50
3.6.4 模擬數據 50
3.7 超音波波速試驗 52
3.7.1 實驗儀器 52
3.7.2 試驗步驟 52
3.8 水泥砂漿棒飽和度與超音波波速試驗 54
3.8.1 實驗步驟: 54
第4章 結果與討論 55
4.1 預估誤差 55
4.1.1 儀器誤差 55
4.1.2 熱傳導係數誤差 58
4.2 參數設計-電壓 61
4.3 參數設計-溫差及時間間隔 64
4.4 實驗雜訊 73
4.4.1 雜訊影響-四線段驗證 73
4.4.2 雜訊濾除 76
4.4.3 設定MWS 80
4.5 雜訊濾除驗證 82
4.6 模擬數據驗證 83
4.6.1 權重形狀驗證 83
4.6.2 模擬數據雜訊濾除驗證 88
4.7 含水量對熱傳導係數影響 91
4.8 橫向等向性岩石熱傳導係數 93
4.9 飽和度對超音波波速影響 95
4.10 橫向等向性岩石的超音波波速 99
4.11 橫向等向性岩石熱傳導係數與超音波波速相關性 107
第5章 結論與建議 109
5.1 結論 109
5.2 建議 110
參考文獻 田永銘,「放射性廢料處置緩衝材料回脹及熱傳導特性研究(II)」,行政院原子能委員會委託研究計畫研究報告,台北(2002)。
田永銘、朱正安、張家銘、鐘富誠、陳婕,「熱探針量測法應用於大地材料之適用性」,2006岩盤工程研討會論文集,台南,第669-678頁(2006)。
朱正安、張大猷、田永銘,「緩衝材料熱傳導係數之量測與預測模式」,2004岩盤工程研討會論文集,第694-701頁,台北(2004)。
林哲彥、李英豪、朱蘊鑛,統計學,東華書局,台北市(2005)。
陳弘馨,Excel統計資料分析實務-樞紐分析/OLAP/Access整合應用,文魁資訊股份有限公司,台北市(2003)。
陳可杰、黃聯海、李宗倚、李婉怡、陳益昌,統計學,滄海書局,台中市(2003)。
張大猷,「熱探針連續量測法應用於緩衝材料熱傳導係數之量測與分析」,碩士論文,國立中央大學土木工程學系,中壢(2004)。
張詩岳,「足尺寸混凝土構件的澆置品質與非破壞檢測」,碩士論文,朝陽科技大學營建工程研究所,霧峰(2004)。
張家銘,「以熱探針法量測大地材料熱傳導係數之適用性」,碩士論文,中央大學土木工程學系,中壢(2006)。
游忠霖,「以ABAQUS探討熱探針法之試驗變因」,碩士論文,中央大學土木工程學系,中壢(2007)。
楊武智,感測器與數位信號處理,全華科技圖書股份有限公司,台北市(1999)。
葉怡成,測量學-21世紀觀點,東華書局股份有限公司,台北市(2007)。
Amadei, D., Rock Anisotropy and the Theory of Stress Measurement, Springer-Verlag, Heidelberg (1983).
ASTM, “ASTM C177 : Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the GUARDED-Hot-Plate Apparatus,” Annual Book of ASTM Standards, Vol.1630, (2004).
ASTM, “ASTM C518 : Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus,” Annual Book of ASTM Standards, Vol.0406, (2004).
ASTM, “ASTM E1225 : Standard Test Method for Thermal Conductivity of Solids by Means of the Guarded-Comparative-Longitudinal Heat Flow Technique,” Annual Book of ASTM Standards, Vol.1402, (2004).
ASTM, “ASTM D5334 : Standard Test Method for Determination of Thermal Conductivity of Soil and Rock by Thermal Needle Probe Procedure,” Annual Book of ASTM Standards, Vol. 0409(2000).
Barla, G. Rock anisotropy - Theory and laboratory testing. In: Müller L., editor. Rock mechanics, pp. 131–169(1974).
Burkhardt, H., Honarmand, H., and Pribnow, D., “Test measurements with a new thermal conductivity borehole tool,” Tectonophysics, Vol. 244, pp. 161-165 (1995).
Bouguerra, A., Laurent, J. P., Goual, M. S., and Queneudec, M., “Measurement of the thermal conductivity of solid aggregates using the transient plane source technique, ” Journal of Physics D: Applied Physics, Vol. 30, No. 20, pp. 2900-2904 (1997).
Clauser, C., and Huenges, E., “Thermal conductivity of rock and minerals In:AGU Reference Shelf 3 Rock Physics and Phase Relations. ” A Handbook of Physical Constants. pp. 105-125 (1995).
Çanakcia, H., Demirboğa, R., Karakoç, M.B., and Şirin, O., “Thermal Conductivity of limestone from Gaziantep (Turkey),” Building and Environment, Vol. 42, No. 24, pp. 1777-1782 (2007).
Farouki, O. T., “Thermal Properties of Soils, Series on Rock and Soil Mechanics, ” Vol.11, Trans Tech Publications, Germany (1986).
Grubbe, K., Haenel, R., and Zoth, G. “Determination of the vertical component of thermal conductivity by line source methods,” Zeitschrift für Geologie und Paläontologie, Teil I H (1/2), pp. 49-56 (1983).
Gustavsson, J.S., Gustavsson, M., Gustafsson, S.E., “On the use of the hot disk thermal constants analyser for measuring the thermal conductivity of thin samples of electrically insulating materials,” Proc. 24th Int. Thermal Conductivity Conf., Pittsburgh, USA (1997).
Horai, K., and Baldridge, W. S., “Thermal conductivity of nineteen igneous rocks, I: Application of the needle probe method to the measurement of the thermal conductivity of rock,” Phys. Earth Planet. Interiors, Vol. 5, pp. 151-156(1971).
Huenges, E., Burkhardt, H., Erbas, K., “Thermal conductivity profile of the KTB pilot corehole,” Scientific Drilling, Vol. 1, pp.224-230(1990).
Incropera, F. P., and DeWitt, D. P., Fundamentals of Heat and Mass Transfer, 4th Ed., John Wiley & Sons, Inc., New York, pp. 44-55 (1996).
Krishnaiah, S., Singh, D. N., and Jadhav, G. N., “A methodology for determining thermal properties of rocks,” International Journal of Rock Mechanics and Mining Sciences, Vol. 41, No. 5, pp. 887-882(2004).
Krhraman, S.,“The correlations between the saturated and dry P-wave welocity of rocks,” Ultrasonics, Vol. 46, pp. 341-348(2007).
Mitchell, J. K., and Kao, T. C., “Measurement of soil thermal resistivity,” Journal of the Geotechnical Engineering Division, Vol. 104, pp. 1307-1320 (1978).
Özkahraman, H. T., Selver, R., and Isik, E. C., “Determination of the thermal conductivity of rock from P-wave velocity,” Internal Journal of Rock Mechanics&Mining Sciences, Vol. 41, No. 4, pp. 703-708 (2004).
Popov, Y. A., Pribnow, D. F. C., Sass, J. H., Williams, C. F., and Burkhardt, H., “Characterization of rock thermal conductivity by high-resolution optical scanning,” Geothermics, Vol. 28, No. 2, pp. 253-276(1999).
Pribnow, D., Sass, J.H., “Determination of thermal conductivity from deep boreholes,” Journal of Geophysical Research, Vol. 100, pp. 9981-9994 (1995).
Popov, Y.A., Semionov, V.G.., Korosteliov, V.M., Berezin, V.V., “Non contact evaluation of thermal conductivity of rocks with the aid of a mobile heat source,” Izvestiya, Physics of the Solid Earth, Vol. 19, pp. 563.567(1983).
Zhuang, Y., Chen, L., Wang, X. S., and Lian, J., “A weighted moving average-based approach for cleaning sensor data,” International Conference on Distributed Computing Systems, IEEE, (2007).
指導教授 田永銘(Yong-Ming Tien) 審核日期 2008-12-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明