博碩士論文 953202033 詳細資訊


姓名 黃慶慶(Hnin-Hnin Mon)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 電弧爐還原碴製作混凝土可行性研究
(Feasibility study of concrete made with electric arc furnace slag)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鹼活化爐石粉混凝土與卜特蘭水泥混凝土相較之下,具有較佳之的抗壓強度發展、耐久性及抵抗化學侵蝕能力等優點,但亦伴隨速凝、乾縮量過大及鹼質與粒料反應等負面效應。研究發現以鹼活化處理技術,將電弧爐還原碴加以活化後做為混凝土中之膠結料,可替代水泥拌製混凝土,提升還原碴之資源再利用性。
本研究主要以爐石粉取代部分還原碴方式,降低活化劑用量改善速凝及乾縮問題。另一方面設計28天目標強度為140~210 kgf/cm2之鹼活化還原碴混凝土,同時進行成本分析,最後對鹼活化還原碴漿體之抗硫酸鹽能力及高溫高濕度下之膨脹量加以探討。
研究結果顯示爐石粉取代還原碴量達50%時,活化劑之鹼模數比可由1.75降為0.75,含鹼當量由7%降為4%,同時改善了速凝及乾縮問題。鹼活化還原碴混凝土在鹼模數比0.75、含鹼當量4%時,抗壓強度能便達到28天目標強度,且強度隨齡期持續增強,90天時最高可達347 kgf/cm2。耐久性試驗方面雖具有較好的抗硫酸鹽能力,但因鹼量高發生鹼質與粒料反應之潛能較高,因此應避免使用具活性之粒料。
摘要(英) Several studies indicate that alkali-activated slag cements and
concretes present high mechanical strength and good performance in
chemical attack. However waterglass-activated slag mortars and
concretes show significantly higher shrinkage and shorter setting time
than ordinary Portland cement.
This study aims at reducing shrinkage and averting the rapid setting
by partly replacing blast furnace slag in alkali-activated electric arc
furnace reductive slag concrete. Also, concrete mix composition
for alkali-activated electric-arc furnace reductive slag cement concrete
with compressive strength of 140 kgf/cm2 to 210 kgf/cm2 at the age of
28 days are developed.
The dosage of alkaline activator was reduced form 7% to 4% (by
Na2O) and modulus was reduced from 1.75 to 0.75 when the replacement
of blast furnace slag was up to 50% of electric-arc furnace reductive slag.
When the dosage of alkaline activator decrease, the setting time increase
and longer than ordinary Portland cement. The drying shrinkage was been
reduced and the compressive strength of the concrete was found to be
over 210 kgf/cm2 at 28 days.
關鍵字(中) ★ 速凝
★ 鹼活化還原碴混凝土
★ 收縮
關鍵字(英) ★ electric arc furnace reductive slag
★ setting time
論文目次 第一章 前言 1
1.1研究動機 1
1.2 研究目的 2
1.3 研究內容 2
第二章 文獻回顧 4
2.1 電弧爐煉鋼 4
2.1.1 電弧爐煉鋼簡介 4
2.1.2 還原碴之產量及特性 6
2.2 鹼活化處理技術 9
2.2.1 鹼活化劑之反應機理 9
2.2.2 所使用之活化劑及其反應機理 11
2.3 影響鹼活化成效之各種因子 13
2.3.1 電弧爐還原碴細度對鹼活化成效之影響 13
2.3.2 活化劑濃度對抗壓強度之影響 14
2.3.3 活化劑濃度對砂漿試體收縮之影響 16
2.4 爐石粉取代部份還原碴之影響 18
2.4.1 爐石粉取代還原碴之活化成效 18
2.5鹼活化爐石粉混凝土之特性 22
2.5.1 鹼活化爐石粉混凝土之工作性 22
2.5.2 鹼活化混凝土內過渡區之發展 23
2.5.3 抗硫酸鹽侵蝕 26
2.5.4 鹼質與粒料反應 28
2.5.5 爐石粉水泥試體之色澤變化 32
2.6 鹼活化爐石粉混凝土配比設計 34
第三章 實驗計畫 39
3.1 實驗材料 39
3.2 實驗設備及儀器 44
3.3實驗流程及方法 53
3.3.1 實驗流程 53
3.3.2 實驗方法 60
3.4 鹼活化劑劑量調配 64
第四章 結果與分析 66
4.1 還原碴基本性質分析 67
4.1.1 物理性質 67
4.1.2 化學性質分析 70
4.2 爐石粉最佳取代量與活化劑用量 72
4.2.1 還原碴之品質檢驗 72
4.2.2 爐石粉取代量與活化劑用量 75
4.3 鹼活化漿體之體積穩定性 81
4.4 鹼活化還原碴混凝土配合設計 87
4.4.1 建立鹼活化劑量和砂漿強度之關係 87
4.4.2 鹼活化還原碴混凝土配比 89
4.4.3鹼活化還原碴混凝土性質 90
4.4.4 鹼活化還原碴混凝土成本分析 97
4.5鹼活化還原碴混凝土之耐久性 99
4.5.1 高溫及高濕度下之膨脹量 99
4.5.2 抗硫酸鹽侵蝕試驗 100
4.6 微觀分析 102
第五章 結論與建議 108
5.1結論 108
5.2建議 109
參考文獻 110
參考文獻 李宜桃,「鹼活化還原碴漿體之收縮及抑制方法研究」,國立中央大學土木工程研究所碩士學位論文(2003)。
蕭遠智,「鹼活化電弧爐還原碴之水化反應特性」,國立中央大學土木工程研究所碩士學位論文(2002)。
郭硯華,「以鹼活化技術資源化電弧爐煉鋼還原碴之研究」,國立中央大學土木工程研究所碩士學位論文(2007)。
ASTM C227 (1998). “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Conbination.” ASTM Designation.
ASTM C596 (2001). “Standard Test Method for Drying Shrinkage of Mortar Containing Hydraulic Cement.” ASTM Designation.
ASTM C157 (2006). “Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete.” ASTM Designation.
ASTM C191 (2004). “Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle.” ASTM Designation.
ASTM C143 (2005). “Standard Test Method for Slump of Hydraulic-Cement Concrete.” ASTM Designation.
ASTM C490 (2004). “Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete .” ASTM Designation.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (1999). “Alkali activation of Australian slag cement. ” Cement and Concrete Research, 29 (1),113-120.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (2000). “Effect of admixtures on properties of alkali-activated slag concrete.” Cement and Concrete Research, 30 (9), 1367-1374.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (2001). “Resistance of alkali-activated salg concrete to alkali-aggregate reaction. ” Cement and Concrete Research, 31 (2), 331-334.
Brough, A. R., and Atkinson, A. (2002). “Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure.” Cement and Concrete Research, 32 (6), 865-879.
Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (2003). “Sulfate attack on alkali-activated slag concrete.” Cement and Concrete Research, 32 (2), 211-216.
Collins, F., and Sanjayan, J. G. (1999). “Workability and mechanical properties of alkali-activated slag concrete.” Cement and Concrete Research, 29 (3), 455-458.
Collins, F., and Sanjayan, J. G. (1999). “Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder.” Cement and Concrete Research, 29 (3), 459-462.
Collins, F., and Sanjayan, J. G. (1999). “Strength and shrinkage properties of alkali-activated slag concrete containing porous coarse aggregate. ” Cement and Concrete Research, 29 (9), 607-610.
Collins, F., and Sanjayan, J. G. (2000). “Effect of pore size distribution on drying shrinkage of alkali-activated slag concrete.” Cement and Concrete Research, 30 (9), 1401-1406.
Fernandez-Jimenez, A., and Puertas, F. (2002). “The alkali-silica reaction in alkali-activated granulated slag mortars with reactive aggregate” Cement and Concrete Research, 32 (7), 1029-1024.
Krizan, D., and Zivanovic, B. (2002). “Effects of dosage and modulus of water glass on early hydration of alkali-slag cements.” Cement and Concrete Research, 32 (8), 1181-1188.
Mehta, P. K. (1986). Concrete structure properties and materials, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A.
Machado, J. G. M. S., Brehmb, F. A., Moraes, C. A. M., Santos, C. A. S.,
Vilela, A. F. C., and Cunha, J. B. M. (2006). “Chemical, Physical, Structural and Morphological Characterization of the Electric Arc Furnace Dust.” Journal of Hazardous Materials, 136 (3), 953-960.
Palacios, M., Puertas, F. (2007). “Effect of shrinkage-reducing admixtures on the of alkali-activated slag mortars and pastes.” Cement and Concrete Research, 37 (5), 691-702.
Shi, C., and Li, Y. (1989). “Investigation on some factors affecting the characteristics of alkali-activated phosphorus slag cement.” Cement and Concrete Research, 19 (4), 527-533.
Shi, C., and Day, R. L. (1995). “A calorimetric study of early hydration of alkali slag cement.” Cement and Concrete Research, 25 (6), 1333-1346.
Shi, C., and Day, R. L. (1996). “Some factors affecting early hydration of alkali slag cement.” Cement and Concrete Research, 26 (3), 439- 447.
Shi, C., (1996). “Strength, Pore Structure and Permeability of Alkali-Activated Slag Mortars.” Cement and Concrete Research, 26 (12), 1789-1799.
Shi, C., and Xie, P. (1998). “Interface between cement paste and quartz sand in alkali-activated slag mortars.” Cement and Concrete Research, 28 (6), 887-896.
Shi, C., Krivenko, P. V., Roy, D. (2006). Alkali-activated cements and concretes. Taylor & Francis, New York.
Song, S., and Jennings, H. M. (1999). “Pore solution chemistry of alkali-activated ground granulated blast-furnace slag.” Cement and Concrete Research, 29 (2), 159-170.
Sioulas, B., and Sanjayan, J.G. (2001). “The coloration phenomenon associated with slag blended cements.” Cement and Concrete Research, 31 (2), 313-320.
Wang, S. D., Scrivener, K. L., and Pratt, P. L. (1994). “Factors affecting the strength of alkali-activated slag.” Cement and Concrete Research, 24 (6), 1033-1043.
Young, J. F., Mindess, S. and Darwin, D. (2002). Concrete, Prentice-Hall, Inc., Upper Saddle River, New Jersey, U.S.A.
指導教授 黃偉慶(Wei-hsing Huang) 審核日期 2008-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡