博碩士論文 953202036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:34.204.173.45
姓名 莊怡芳(Yi-Fang Chuang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 未飽和緩衝材料吸力與水力傳導度推求及再飽和行為
(Soil suction, hydraulic conductivity, and resaturation behavior of unsaturated buffer material)
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 國際間核能先進國家對於高放射性廢棄物處置,皆以多重障壁深地層處置為主,而緩衝材料屬多重障壁包覆廢棄物之主要安全貢獻因子之一,因處置場位於地下數百公尺處,必定遭受地下水入侵之影響,而緩衝材料因包覆於廢棄物罐外,亦受到放射性廢棄物釋放衰變熱影響。本研究利用有限元素程式,模擬緩衝材料受地下水入侵與溫度影響下之含水量分佈,以土壤吸力與未飽和水力傳導度之觀念掌握緩衝材料之再飽和行為,利用水汽平衡試驗量測BH膨潤土與日興土於不同溫度下之土壤吸力土壤吸力與含水量關係,並利用土壤-水份特性曲線推估模式,取得完整飽和過程之吸力變化。土壤於未飽和狀態下之水力傳導度將隨含水量而變化,本研究將於土壤-水分特性曲線之基礎下計算不同飽和度下之水力傳導度值。接著利用實驗所得之參數,應用於有限元素程式模擬緩衝材料攝水行為。
吸力試驗結果得知,土壤吸力會因環境溫度升高而降低,且BH膨潤土之吸力範圍大於日興土。土壤接近乾燥之吸力量測結果,亦顯示土壤於接近乾燥時之吸力將達106 kPa。實驗參數套用於程式模擬結果多近於實驗值之趨勢,可合理模擬土壤於不同溫度下之攝水行為。
摘要(英) Deep geological disposal is considered by many countries as a feasible way for the final disposal of high-level radioactive wastes. Buffer material plays a major role for the isolation of radioactive wastes in an underground repository. This research investigates the unsaturated hydraulic conductivity and resaturation behavior of buffer material, with emphasis on the effects of soil suction of buffer material on the groundwater intrusion processes and the temperature effect. Soil suction of Zhisin clay and Black Hill (BH) bentoite were determined using vapor equilibrium technique on clay specimens so as to determine the relationship between soil suction and water content. Soil-water characteristic curve was fitted with the Fredlund model such that the hydraulic conductivity of clays in unsaturated conditions can be estimated. The finite element program ABAQUS was then employed to carry out the numerical simulation of the resaturation process in the near field of a repository.
The results show that soil suction of BH behtonite is higher than Zhisin clay, and soil suction was found to decrease as the temperature increases. At a dry state, the soil suction will reach a maximum suction of 106 kPa. Results of the numerical simulation were validated using the degree of saturation profile obtained from the water uptake test on the two clays. The unsaturated behavior of highly plastic bentonite material shows important effects on the saturation behavior of the material.
關鍵字(中) ★ 緩衝材料
★ 土壤-水份特性曲線
★ 未飽和水力傳導度
關鍵字(英) ★ soil-water characteristic curve
★ unsaturated hydraulic conductivity
★ buffer material
論文目次 摘要 IV
Abstract V
目錄 VII
圖目錄 X
表目錄 XIV
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的與內容 2
第二章 文獻回顧 5
2.1 高放射性廢棄物處理與最終處置場設計概念 5
2.2 緩衝材料之特性與功能 9
2.3 熱-水-力學耦合相關研究 13
2.3.1 深地層處置場之熱-水-力學耦合作用 13
2.3.2 熱傳模擬 15
2.3.3 熱-水力耦合模擬 16
2.3.4 熱-力學模擬 17
2.3.5 化學傳輸模擬 17
2.4 未飽和土壤組成 18
2.4.1 土壤吸力 20
2.4.2 土壤-水份特性曲線 22
2.5 土壤水力傳導度 34
2.5.1 飽和土壤水力傳導度 35
2.5.2 未飽和土壤水力傳導度 36
第三章 數值分析理論與試驗方法 40
3.1 前言 40
3.2 土壤吸力試驗方法 40
3.2.1 試驗土壤之基本性質 41
3.2.1 水汽平衡法(Vapour Equilibrium Technique) 42
3.2.2 體積變化量測 47
3.3 程式模擬基本理論 48
3.3.1熱傳分析理論 49
3.3.2 水-力學分析理論 50
第四章 試驗結果與程式模擬 62
4.1 吸力試驗結果 62
4.2 體積變化量測結果 69
4.3 土壤水份特性曲線(soil-water characteristic curve, SWCC) 73
4.4 未飽和水力傳導度推求 82
4.5 緩衝材料受熱-水影響數值模擬 87
4.5.1 緩衝材料攝水行為分析 87
4.5.2 緩衝材料受熱-水作用模擬 98
4.6 案例分析 105
第五章 結論與建議 114
5.1 結論 114
5.2 建議 115
參考文獻 117
參考文獻 ASTM Standard D1188-07: Standard Test Method for Bulk Specific Gravity and Density of Compacted Bituminous Mixtures Using Coated Samples (Electronic version), Annual Book of ASTM Standards, Vol. 04.03, ASTM International, West Conshohocken, PA.
Bishop, A. W. (1959). “The principle of effective stress.” Lecture delivered in Oslo, Norway, in 1955: published in Teknisk Ukeblad, Vol. 106, no. 39, pp. 859-863.
Börgesson, L., Johannesson L.-E., Sandén, T., and Hernelind, J. (1995). “Modelling of the physical behaviour of water saturated clay barriers. Laboratory tests, material models and finite element application.” SKB Technical Report TR-95-20, SKB, Stockholm.
Börgesson, L. and Hernelind, J. (1999). “Coupled thermo-hydro-mechanical calculations of the water saturation phase of a KBS-3 deposition hole. Influence of hydraulic rock properties on the water saturation phase.” SKB Technical Report TR-99-41, SKB, Stockholm.
Brooks, R. H., and Corey, A. T., “Hydraulic properties of porous media.” Hydrology Paper, Colorado State University, Fort Collins, No.3, pp.27-38 (1964).
Burdine, N. T. (1953). “Relative permeability calculations from pore-size distribution data.” Petrol. Trans., Am. Inst. Min. Eng., Vol. 198, pp.71-77.
Childs, E. C. and Collis-George, N. (1950). “The permeability of porous materials.” Proc. Roy. Soc. London, Ser. A. Vol. 201, pp.392-405.
Cleall, P. J., Melhuish, T. A., and Thomas, H. R. (2006). “Modelling the three-dimensional behaviour of a prototype nuclear waste repository.” Engineering Geology, Vol. 85, pp. 212-220.
Delage, P., Howat, M. D., and Cui, Y. J. (1998). “The relationship between suction and swelling properties in a heavily compacted unsaturated clay.” Engineering Geology, Vol. 50, pp. 31-48.
Hillel, D. (1998). Environmental soil physics, Academic Press, San Diego, U.S.A.
Ebrahimi-B, N., Gitirana, G. F. N., Jr., Fredlund, D G., Fredlund, M. D., and Samarasekera, L. (2004). “A lower limit for the water permeability cooefficient.” Proc. 57th Canadian Geotechnical Conf., Vol. 1, Quebec City, Que., Canada, pp.12-19.
Fredlund, D. G., and Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley & Sons, Inc., New York.
Fredlund, D. G., and Xing, A. (1994a). “Equations for the soil-water characteristic curve,” Canadian Geotechnical Journal, Vol. 31, pp. 521-532.
Fredlund, D. G., Xing, A., and Huang S. (1994b) “Predicting the permeability function for unsaturated soil using the soil-water characteristic curve.” Canadian Geotechnical Journal, Vol. 31, pp. 533-546.
Gates, J. I. and Lietz, W. T. (1950). “Relative permeabilities of California cores by the capillary-pressure method. Drilling and production practices. ” Am. Petrol Inst. Q., pp.285-298.
Hökmark, H. (1996). “Canister positioning – stage 1 – thermomechanical nearfield rock analysis.” SKB, Djupförvar, AR D-96-014.
Hwang, Y., Kuh, J. E., and Jeong, M. S. (2006). “Understanding a re-saturation and its impacts on a potential repository for spent nuclear fuel in ROK.” Proceedings of East Asia Forum on Radwaste Management Conference, Lung-Tan, Taiwan.
Janssen, D. J. and Dempsey, B. J. (1980). “Soil-moisture properties of subgrade soils.” The 60th Annu. Transporation Res. Board Meeting, Washington, D.C.
Kunze, R. J., Uehara, G., and Graham, K. (1968). “Factors important in the calculation of hydraulic conductivity.” Soil Science Society of America, Proceedings, Vol. 32, pp. 760-765.
Likos, W. J. and Lu, N. (2003). “Automated humidity system for measuring total suction characteristics of clay. (Electronic version)” Geotechnical Testing Journal, Vol. 26(2), pp.1-12.
Lu, N. and Likos, W. J. (2004). Unsaturated soil mechanics. John Wiley & Sons, Inc., New Jersy.
Marcial, D., Delage, P., and Cui, Y. J. (2002). “On the high stress compression of bentonites.” Canadian Geotechnical Journal, Vol. 39, pp. 812-820.
Marshall, T. J. (1958). “A relation between permeability and size distribution of pores.” Journal of Soil Science, Vol. 9, pp. 1-8.
McInnes, K. (1981). “Thermo conductivityes of soils from dryland wheat regions in Eastr Washiton.” MSc thesis, Washington State University.
McKee, C. R. and Bumb, A. C. (1984). “The importance of unsaturated flox parameters in designing a monitoring system for hazardous wastes and environmental emergencies.” Proc., Haz. Mat. Control Res. Inst. Nat. Conf., pp. 50-58.
Millington, R. J. and Quirk, J. P. (1961). “Permeability of porous solids.” Faraday Soc. Trans., Vol. 57, pp. 1200-1206.
Mualem, Y. (1976). “A new model for predicting the hydraulic conductivity of unsaturated porous media.” Water Resources Research, Vol. 12, pp. 513-522.
Pusch, R. (2001). “The buffer and backfill handbook, part 2: materials and techniques.” SKB Technical Report TR-02-12, SKB, Stockholm.
Pusch, R. (2003). “The buffer and backfill handbook, part 3: models for calculation of processes and behaviour.” SKB Technical Report TR-03-07, SKB, Stockholm.
Romero, E., Gens, A., and LLoret, A. (2001). “Temperature effects on the hydraulic behaviour of an unsaturated clay.” Geotechnical and Geological Engineering, Vol. 19, pp. 311-332.
Saiyouri, N., Hicher, P. Y., and Tessier, D. (2000). “Microstructural approach and transfer water modelling in highly compacted unsaturated swelling clays.” Mechanics of Cohesive-Frictional Materials, Vol. 5, pp. 41-60.
Sillers, W. S., Fredlund, D. G, and Zakerzadeh, N. (2001). “Mathematical attributes of some soil-water characteristic curve models.” Geotechnical and Geological Engineering, Vol. 19, pp. 243-283.
Svensk Karnbranslehantering AB, (2007). “Deep repository for spent nuclear fuel.” Swedish Nuclear Fuel and Waste Management Co., http://www.skb.se/upload/publications/pdf/Djupfor_eng.pdf
Swedish Nuclear Fuel Supply Co/Division KBS (SKBF/KBS) (1983). “Final storage of spent nuclear fuel – KBS-3.” Art 716, SKB, Stockholm.
Tang, A. M. and Cui, Y. J. (2005). “Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay.” Canadian Geotechnical Journal, Vol. 42, pp. 287-296.
Thunvik, R. and Braester, C. (1991). “Heat propagation from a radioactive water repository. SKB 91 reference canister.” SKB Technical Report TR 91-61, Stockholm, Sweden.
Xu, Y. (2004). “Calculation of unsaturated hydraulic conductivity using fractal model for the pore-size distribution.” Computers and Geotechnics, Vol. 31, pp. 549-557.
van Genuchten, M. T. (1980). “A closed form equation for predicting the hydraulic conductivity of unsaturated soils,” Soil Science Society of America Journal, Vol. 44, pp. 892-898.
Williams, J., Prebble, R. E., Williams, W. T., and Hignett, C. T. (1983). “The influence of texture, structure and clay mineralogy on the soil moisture characteristics.” Australian J. of Soil Res., vol. 21, pp. 15-32.
王柏鈞,(2003),「緩衝材料之未飽和特性對核廢料最終處置系統熱傳模擬之影響」,碩士論文,國立中正大學應用地球物理研究所,嘉義。
王雅薇 (2007),「緩衝材料在熱/水力耦合作用下溫度分布與水力傳導性研究」,碩士論文,國立中央大學土木工程學系,中壢。
李宛諭 (2007),「土壤吸力對緩衝材料飽和行為之影響及模擬研究」,碩士論文,國立中央大學土木工程學系,中壢。
林士哲,(2003),「金崙地區溫泉資源調查分析之研究」,碩士論文,國立成功大學資源工程研究所,台南。
馬正明,(2003),「核廢料散熱對核能污染物在粘土中傳輸的影響」第十屆大工程研討會,三峽,台北,第956-959頁。
邱太銘,(1999),「國外用過核燃料/高放射性廢料最終處置現況」,物管局簡報資料。
核能研究所(2002),「我國用過核燃料深層地質處置概念討論會」,行政院原子能委員會核能研究所。
莊文淵 (1998),「土壤材料之核種遷移吸附特性試驗與研究」,核能研究所內部報告,INER-T2443。
許俊賢,(2003),「深層岩體熱力-水力-力學耦合行為之研究」,碩士論文,國立成功大學資源工程學系,台南。
陳朝旭 (2001),「用過核廢料深層地下處置設計之研究」,碩士論文,國立中央大學土木工程學系,中壢。
陳文泉 (2004),「高放射性廢棄物深層地質處置緩衝材料之回脹行為研究」,博士論文,國立中央大學土木工程學系,中壢。
黃安斌 (1998),大地工程原理,臺灣東華書局股份有限公司,臺北市。
蕭宗璿 (2006),「不飽和土壤濕化水分特性曲線影響因子之研究」,碩士論文,國立中央大學土木工程學系,中壢。
戴豪君,(2002),「深層岩體熱力-水力-力學偶合行為之初步研究」,碩士論文,國立成功大學資源工程學系,台南。
謝馨輝,(2002),「核廢料地下處置之熱傳導及初步熱應變分析」,碩士論文,國立中央大學土木工程研究所,中壢。
指導教授 黃偉慶(Wei-Hsing Huang) 審核日期 2008-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明