博碩士論文 953202069 詳細資訊

以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:
姓名 李依淇(Yi-Chi Li)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 貝氏推論應用於GPS週波脫落改正與近即時定位之研究
(GPS Cycle-Slip Correction and Near-Real-Time Positioning Based on Bayesian Inference)
★ 利用數個參考站模式化電離層影響量以進行GPS衛星測量★ 白化濾波應用於GPS動態衛星測量之研究
★ 應用數值地型於立體空載SAR影像之分析★ 消去GPS相位模稜OTF相對定位之研究
★ 應用地形物元於衛載SAR影像匹配之研究★ 參數解關聯應用於GPS雙主站相位模稜求解
★ 衛載SAR地塊影像匹配之參數最佳化★ 最小二乘過濾法應用於動態GPS衛星定位平穩性之研究
★ GPS即時動態定位最佳化演算法比較研究★ Radarsat-1 SAR影像最小二乘匹配之研究
★ 方差與協方差分量於Radarsat-1地塊影像匹配之研究★ 率定GPS接收器時間偏差對高程定位精度提升之研究
★ 分塊輻射參數調整應用於不同來源影像之匹配與套合★ 利用多參考站模式化相對對流層天頂向延遲以進行GPS動態定位
★ 應用時間序列分析於GPS多路徑效應之研究★ 研究不同資源衛星影像之匹配與套合
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) GPS載波相位觀測量之精度較電碼觀測量高,但利用載波相位進行定位時,會有週波脫落以及相位模稜兩大問題。週波脫落需加以偵測並改正,否則將對模稜求定及定位成果之精確度造成顯著的影響;此外,利用載波相位觀測量進行衛星測量求解位置時,如何快速得到正確的整數相位模稜值,是求解精度與效率的關鍵。
本研究利用貝氏統計為基礎之方法開發演算程式,主要工作分為: (1) 於資料前處理之過程中,精確地改正週波脫落現象;(2)基於相位模稜應為整數未知數的概念,以貝氏方法進行模稜求定工作,並進行近即時定位;(3)利用蒙地卡羅數值法決策定位參數的信賴區域。實驗成果顯示,相位資料若發生週波脫落之狀況,本研究之演算程式可即時改正之;此外,無論靜態或緩速動態實驗,貝氏方法皆達到高精度之定位成果,且可即時以視覺化的方式呈現定位參數之信賴區域。
摘要(英) GPS carrier phase observation is more precise than code observation, but it causes the problems of phase ambiguity and cycle-slips. Detecting and correcting cycle-slips is a classical issue and is part of the more general problem of fixing integer variables in GPS phase observations. Furthermore, the key point to reach the target of precision and efficiency while using carrier phase for location is how to obtain quickly accurate integers of ambiguity.
The main aims of this research are: (1) correcting cycle-slips at the data preprocessing stage by the Bayesian principle, (2) exploiting a Bayesian near-real-time data processing technique for ambiguity resolution based on the concept that phase ambiguities should be integer unknown parameters, (3) determining the confidence regions of the positioning parameters by using a Monte Carlo method. The experimental results in this paper indicate that the cycle-slips in carrier-phase data can be successfully identified. Furthermore, the accuracy of positioning results can be improved by using Bayesian approach and the confidence regions of positioning solutions can be visualized in near-real-time by using a Monte Carlo method.
關鍵字(中) ★ 貝氏統計
★ 相位模稜求定
★ 週波脫落校正
關鍵字(英) ★ Bayesian inference
★ Cycle-slip correction
★ Ambiguity resolution
論文目次 目錄 I
圖目錄 III
表目錄 VI
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文架構 5
第二章 貝氏統計於週波脫落改正 6
2.1 貝氏統計簡介 6
2.2 GPS衛星觀測量 8
2.2.1 虛擬距離與載波相位觀測方程式 9
2.2.2 觀測量線性組合方程式 12
2.3 貝氏統計於週波脫落改正 16
2.4 逆卡方統計檢定 23
2.5 週波脫落改正演算流程 28
第三章 貝氏統計於GPS衛星動態定位 31
3.1 二次差分模式 31
3.2 相位模稜求定演算 34
3.2.1 最小二乘混合平差模式 34
3.2.2 最大後驗法於相位模稜求定 37
3.2.3貝氏決策指標 39
3.3幾何定位演算 42
3.3.1 定位參數之貝氏估計 42
3.3.2 信賴區域之決策 44
3.3.3貝氏統計檢定 46
3.4 GPS定位演算流程 48
第四章 實驗成果與分析 51
4.1實驗資料背景 51
4.2實驗成果 53
4.2.1 週波脫落改正與補償 54
4.2.2 靜態GPS定位 70
4.2.3 動態GPS定位 83
第五章 結論與建議 90
5.1 結論 90
5.2 建議 91
參考文獻 92
參考文獻 葉添福,2003。最小二乘過濾法應用於動態GPS衛星定位平穩性之研究,碩士論文,國立中央大學土木工程研究所,中壢。
謝吉修,2003。GPS 即時動態定位最佳化演算法比較研究,碩士論文,國立中央大學土木工程研究所,中壢。
Betti, B., M. Crespi, and F. Sanso, 1993. A geometric illustration of ambiguity resolution in GPS theory and a Bayesian approach, Manuscripta Geodaetica, 18(6), 317-330.
Blewitt, G., 1990. An automatic editing algorithm for GPS data, Geophysical Research Letters, 17(3), 199-202.
Carlin, B. P., T. A. Louis, and B. Carlin, 2000. Bayes and Empirical Bayes Methods for Data Analysis, 2nd ed., Chapman & Hall/CRC, New York.
Crocetto, N., M. Gatti, and P. Russo, 2000. Simplified formulae for the BIQUE estimation of variance components in disjunctive observation groups, Journal of Geodesy, 74(6), 447-457.
de Lacy, M. C., F. Sansò, G. Rodriguez-Caderot, and A. J. Gil, 2002. The Bayesian approach applied to GPS ambiguity resolution. A mixture model for the discrete-real ambiguities alternative, Journal of Geodesy, 76(2), 82-94.
de Lacy, M. C., M. Reguzzoni, F. Sansò, and G. Venuti, 2008. The Bayesian detection of discontinuities in a polynomial regression and its application to the cycle-slip problem, Journal of Geodesy, unpaginated.
Denison, D. G. T., C. C. Holmes, B. K. Mallick, and A. F. M. Smith, 2002. Bayesian Methods for Nonlinear Classification and Regression. John Wiley & Sons Ltd, Chichester.
Goad, C. C. and M. Yang, 1997. A new approach to precision airborne GPS positioning for photogrammetry, Photogrammetric Engineering & Remote Sensing, 63(9), 1067-1077.
Gundlich, B. and K. R. Koch, 2002. Confidence regions for GPS baselines by Bayesian statistics, Journal of Geodesy, 76(1), 55-62.
Hassibi, A. and S. Boyd, 1998. Integer parameter estimation in linear models with applications to GPS, IEEE Transactions on Signal Processing, 46(11), 2938-2952.
Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins, 1997. Global Positioning System Theory and Practice, 4th ed., Springer, New York .
Horemuž, M. and L. E. Sjöberg, 2002. Rapid GPS ambiguity resolution for short and long baselines, Journal of Geodesy, 76(6-7), 381-391.
Hugentobler, U., R. Dach, P. Fridez, G. Beutler, H. Bock, E. Brockmann, R. Dach, P. Fridez, W. Gurtner, H. Habrich, U. Hugentobler, D. Ineichen, M. Meindl, L. Mervart, M. Rothacher, S. Schaer, T. Springer, C. Urschl and R. Weber, 2004. Bernese GPS Software Version 5.0 Draft. Printing Office of the University of Bern, Bern.
Koch, K. R., 1999. Parameter Estimation and Hypothesis Testing in Linear Models, 2nd ed., Springer, New York.
Kuang, D., B. E. Schutz, and M. M. Watkins, 1996. On the structure of geometric positioning information in GPS measurements, Journal of Geodesy, 71(1), 35-43.
Lachapelle, G., M. E. Cannon, and G. Lu, 1992. High-precision GPS navigation with emphasis on carrier-phase ambiguity resolution, Marine Geodesy, 15(4), 253-269.
Leick, A., 2004. GPS Satellite Surveying, 3rd ed., John Wiley & Sons, Inc., Hoboken.
Lichten, S. M., Y. E. Bar-Sever, E. I. Bertiger, M. Heflin, K. Hurst, R. J. Muellerschoen, S. C. Wu, T. P. Yunck, and J. F. Zumberge, 1995. GIPSYOASIS II: a high precision GPS data processing system and general orbit analysis tool, Technology 2006, NASA Technology Transfer Conference, Chicago, Illinois, October, 24-26.
Mohamed, A. H. and K. P. Schwarz, 1998. A simple and economical algorithm for GPS ambiguity resolution on the fly using a whitening filter, Navigation, 45(3), 221-231.
Robert, C. P., 2001. The Bayesian Choice: From Decision-theoretic Foundations to Computational Implementation, 2nd ed., Springer, New York.
Sansò, F. and G. Venuti, 1997. Integer variables estimation problems: the Bayesian approach, Annali di Geofisica, 40(5), 1415-1431.
Tanner, M. A., 1993. Tools for Statistical Inference: Methods for the Exploration of Posterior Distributions and Likelihood Functions, 2nd ed., Springer-Verlag, New York.
Teunissen, P. J. G., 1995. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation, Journal of Geodesy, 70(1-2), 65-82.
Teunissen, P. J. G., P. J. de Jonge, and C. C. J. M. Tiberius, 1997. Performance of the LAMBDA method for fast ambiguity resolution, Navigation, 44(3), 373-383.
Teunissen, P. J. G., 1999. The probability distribution of the GPS baseline for a class of integer ambiguity estimators, Journal of Geodesy, 73(5), 275-284.
Tiberius, C. and F. Kenselaar, 2003. Variance component estimation and precise GPS positioning: case study, Journal of Surveying Engineering, 129(1), 11-18.
Verhagen, S. and P. J. G. Teunissen, 2006. On the probability density function of the GNSS ambiguity residuals, GPS Solutions, 10(1), 21-28.
Wang, J., M. P. Stewart, and M. Tsakiri, 1998. A discrimination test procedure for ambiguity resolution on-the-fly, Journal of Geodesy, 72(11), 644-653.
Wu, J. and T. F. Yeh, 2005. Single-epoch weighting adjustment of GPS phase observables, Navigation, 52(1), 39-47.
Wu, J. and C. H. Hsieh, 2008. GPS on-the-fly medium-length positioning by an estimation of the measurement variance, Journal of the Chinese Institute of Engineers, 31(3), 459-468.
Xu, P., 2001. Random simulation and GPS decorrelation, Journal of Geodesy, 75(7-8), 408-423.
Zhu, J., X. Ding, and Y. Chen, 2001. Maximun-likehood ambiguity resolution based on Bayesian principle, Journal of Geodesy, 75(4), 175-187.
指導教授 吳究(Joz Wu) 審核日期 2008-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明