博碩士論文 953203002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:52.14.224.197
姓名 呂智員(Jhih-Yuan Lyu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 常壓式熱氣相沉積系統合成單壁奈米碳管之研究
(Synthesis of Single-Wall Carbon Nanotubes by Atmospheric Pressure Thermal CVD)
相關論文
★ 凹形球面微電極與異形微孔的成形技術研究★ 二氧化鈦薄膜之製備與分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 碳奈米管微電極陣列之製造與性質檢測
★ 超塑性5083鋁合金快速成形空孔狀態之分析★ 微極彈性內凹結構波桑比之有限元素法分析
★ 不銹鋼微細槽放電加工及電化學拋光精修槽壁效果之研究★ 壓力容器與引流管接合處之軸對稱有限元素分析
★ 負波桑比結構之桁架有限元素法分析★ 具負波桑比性質之細胞型材料之有限元素法分析
★ 具負波桑比傘狀結構之分析與應用★ Ti-6Al-4V之超塑性成形製程模擬與分析
★ 利用微極彈性理論分析蜂巢式結構之波桑比效應★ 結合微細放電與高頻抖動研磨之微孔加工研究
★ 負波桑比機構之設計與分析★ 微雙材料熱變形樑之應用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用常壓式熱氣相沉積系統成功合成出高品質的單壁奈米碳管。利用浸漬法將醋酸鈷與醋酸鉬均勻附著於二氧化矽的基板上,並藉由製程溫度與氫氣控制奈米碳管的品質;雙金屬催化劑、催化劑濃度和二氧化矽層厚度控制奈米碳管成長密度。浸漬法結合IC製程,引用最佳實驗參數與浸漬法選擇附著的特性,製作橫向奈米碳管場效電晶體,並由I-V電性量測得知奈米碳管為半導體p-type特性,且觀察到有雙極性(Ambipolar)的現象發生。成長之奈米碳管特性由掃描式電子顯微鏡觀察形貌,透過拉曼光普分析奈米碳管的石墨化;利用徑向呼吸模數、原子力顯微鏡和穿透式電子顯微鏡對單壁奈米碳管進行直徑分析。
摘要(英) High quality single-walled carbon nanotubes were synthesized by atmospheric pressure Thermal CVD system. Utilize dip-coating method deposit the uniform cobalt acetate and molybdenum acetate on silicon oxide substrate. Control the quality and density of the carbon nanotubes with process temperature, hydrogen flow and bimetallic catalyst(Co/Mo), cobalt concentration, SiO2 thickness, respectively. We fabricated the back-gated SWNT field effect transistor (SWFET). Combining with the integrated-circuit(IC) techniques and dip-coating method, then quotes the best experimental parameter and absorb the characteristic of dip-coating. By I-V electricity measurement knew the carbon nanotube has p-type semiconducting, and the ambipolar phenomenon were discovered. Morphology and graphitization of Carbon nanotubes obtains by SEM and Raman spectroscopy, respectively. Diameter distribution of SWNT analyzed with radial breathing modes(RBM), AFM and TEM..
關鍵字(中) ★ 雙金屬催化劑
★ 浸漬法
★ 單壁奈米碳管
★ 雙極性
★ 電晶體
關鍵字(英) ★ Bimetallic catalyst
★ Dip-coating
★ Single wall carbon nanotube
★ Transistor
★ Ambipolar
論文目次 摘 要 i
目 錄 iii
圖目錄 v
表目錄 ix
符號表 x
第一章 緒 論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 文獻回顧 3
1-3-1 沈積金屬催化劑之技術 3
1-3-2 奈米碳管場效電晶體(CNT-FET) 5
第二章 奈米碳管的介紹 9
2-1 奈米碳管的起源 9
2-2 奈米碳管的結構 12
2-3 奈米碳管之成長機制 16
2-4 奈米碳管之合成技術 17
2-5 奈米碳管之特性與應用 21
第三章 實驗方法與設備 24
3-1 實驗流程 25
3-2 實驗設備簡介 26
3-3 浸漬法 (Dip-coating method) 30
3-3-1 浸漬法步驟與方法 30
3-3-2 Dip-coating溶液之配製 32
3-4 試片的備製 32
3-4-1 試片清洗程序 32
3-4-2 二氧化矽試片 33
3-4-3 三極元件 33
3-5 Thermal CVD成長奈米碳管之步驟 40
3-5-1 常壓式熱氣相沉積系統 40
3-5-2 低壓式熱氣相沉積系統 41
3-6 奈米碳管特性分析 42
第四章 結果與討論 48
4-1 試片清洗對浸漬法之影響 48
4-2 雙金屬催化劑的影響 50
4-3 製程參數對奈米碳管成長之影響 54
4-3-1 製程溫度對奈米碳管成長之影響 55
4-3-2 氫氣對奈米碳管成長之影響 60
4-3-3 還原時間對奈米碳管成長之影響 64
4-3-4 反應時間對奈米碳管成長之影響 65
4-4 催化劑濃度之影響 69
4-5 二氧化矽厚度對奈米碳管成長之影響 72
4-6 浸漬法於三極元件之應用 75
4-6-1 剝離法(Lift-off method) 77
4-6-2 蝕刻法(Etching method) 80
4-6-3 浸漬法(Post dip-coat method) 82
第五章 結 論 86
參考文獻 87
參考文獻 [1] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, Vol. 354, pp. 56-58, 1991.
[2] K. B. K. Teo et al., “Carbon nanotube technology for solid state and vacuum electronics”, IEE Proceedings-Circuits Devices and Systems, Vol. 151, pp. 443-451, 2004.
[3] A. Jacey et al., “Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics”, Nano Letters, Vol. 4, pp. 447-450, 2004.
[4] K. Tsukagoshi et al., “Carbon nanotube devices for nanoelectronics”, Physics B, Vol. 323, pp. 107-114, 2002.
[5] S. B. Lee et al., “Study of muti-walled carbon nanotube structures fabricated by PMMA suspended dispersion”, Microelectronic Engineering, Vol. 61-62, pp. 475-483, 2002.
[6] A. K. M. F. Kibria et al., “Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium”, International Journal of Hydrogen Energy, Vol. 26, pp. 823-829, 2001.
[7] G. E. Froudakis, “Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake”, Nano Letters, Vol. 1, pp. 531-533, 2001.
[8] H. Tang et al., “Deposition and electro catalytic properties of platinum on well-aligned carbon nanotube (CNT) arrays for methanol oxidation”, Materials Chemistry and Physics, Vol. 92, pp. 548-553, 2005.
[9] Z. Dehouche et al., “The catalytic effect of single-wall carbon nanotubes on the hydrogen sorption properties of sodium alanates”, Nanotechnology, Vol. 16, pp. 402-409(8), 2005.
[10] J. N. Wohlstadter et al. “Carbon nanotube-based biosensor”, Advanced Materials, Vol. 15, pp. 1184-1184, 2003.
[11] P. He, L. Dai, “Aligned carbon nanotube-DNA electrochemical sensors”, Chem. Commun., pp. 348-349, 2004.
[12] J. J. Gooding, “Nanostruturing electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing”, Electrochimica Acta, Vol. 50, pp. 3049-3060, 2005.
[13] Y. Cheng, O. Zhou, “Electron field emission from carbon nanotubes”, Comptes Rendus Physique, Vol. 4, pp. 1021-1033, 2003.
[14] J. A. Misewich et al., “Electrically induced optical emission from a carbon nanotube FET”, Science, Vol. 300, pp. 783-786, 2003.
[15] R. K. Gupta, I. Dwivedy, “International patenting activity in the field of carbon nanotubes”, Current Applied physics, Vol. 5, pp. 163-170, 2005.
[16] M. J. Yacaman et al., “Catalytic growth of carbon microtubules with fullerene structure”, Applied Physics Letters, Vol. 62, pp. 202-204, 1993.
[17] X. Q. Chen, T. Saito, “Aligning single-wall carbon nanotubes with an alternating-current electric field”, Applied Physics Letters, Vol. 78, pp. 3714-3716, 2001.
[18] S. Esconjauregui et al, “Carbon nanotube catalysis by metal silicide: resolving inhibition versus growth”, Nanotechnology, Vol. 18, pp. 015602 -015613, 2007.
[19] M. ISHIKAWA et al., “Composition Control of Ni Silicide by Chemical Vapor Deposition Using Ni(PF3)4 and Si3H8”, Japanese Journal of Applied Physics, Vol. 46, pp. 474-477, 2007.
[20] L. delzeit et al., “Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth, Chemical Physics Letters, Vol. 384, pp. 368-374, 2001.
[21] R. G. Lacerda et al., “Thin-film metal catalyst for the production of multi-wall and single-wall carbon nanotubes”, Journal of Applied Physics, Vol. 96, pp. 4456-4462, 2004.
[22] Y. Murakami et al, “Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substrates”, Chemical Physics Letters, Vol. 377, pp. 49-54, 2003.
[23] M. Hu et al., “Morphology and chemical state of Co–Mo catalysts for growth of single-walled carbon nanotubes vertically aligned on quartz substrates”, Journal of Catalysis, Vol. 225, pp. 230-239, 2004.
[24] Y. Murakami et al., “Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy”, Chemical Physics Letters, Vol. 385, pp. 298-303, 2004.
[25] S. J. Tans et al., “Room-temperature transistor based on a single carbon nanotube”, Nature, Vol. 393, pp. 49-52, 1998.
[26] R. Martel et al., “Single and multi-wall carbon nanotube field-effect transistors”, Applied Physics Letters, Vol. 73, pp. 2447-2449, 1998.
[27] V. Derycke et al., “Carbon nanotube Inter- and Intramolecular Logic Gates”, Nano Letters, Vol. 1, pp. 453-456, 2001.
[28] A. Javey et al., “High Performance n-type Carbon Nanotube Field-Effect Transistors with Chemically Doped Contacts”, Nano Letters, Vol. 5, pp. 345-348, 2005.
[29] J. Kong et al., “Synthesis of individual single walled carbon nanotubes on patterned silicon wafers”, Nature, Vol. 395 , pp. 878-881, 1998.
[30] H. T. Soh et al., “Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes”, Applied Physics Letters, Vol. 75, pp. 627-629, 1999.
[31] N. R. Franklin et al., “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems”, Applied Physics Letters, Vol. 81, pp. 913-915, 2002.
[32] Y. Zhang et al., “Electric-field-directed growth of aligned single-walled carbon nanotubes”, Applied Physics Letters, Vol. 79, pp. 3155-3157, 2001.
[33] A. Javey et al., “Advancements in Complementary Carbon Nanotube Field-Effect Transistors”, IEDM Technical Digest, pp. 741-744, 2003.
[34] G. Wang, Y. Li, Y. Huang, “Structures and electronic properties of peanut-shaped dimers and carbon Nanotubes”, Journal of Physical Chemistry B, Vol. 109, pp. 10957-10961, 2005.
[35] S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, Vol. 363, pp. 603-604, 1993.
[36] D. S. Bethune, C. H. Kiang, M. S. Deveries, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature, Vol. 363, pp. 605-606, 1993.
[37] Wikipedia encyclopedia: carbon nanotube。2008年5月30日,取自 http://en.wikipedia.org/wiki/Carbon_nano_tube
[38] W. Hoenlein et al., “Carbon nanotube applications in microelectronics”, IEEE transactions on components and packaging technologies, Vol. 27, pp. 629-634, 2004.
[39] T. W. Odom et al﹐“Structure and Electronic Properties of Carbon Nanotubes”, Journal of Physical Chemistry B, Vol. 104, pp. 2794 -2809, 2000.
[40] Application to the composite material of carbon fiber - Endo Laboratory。2008年5月14日,取自Http://endomoribu.shinshu-u.ac.jp/research/cnt/composit.html
[41] T. H. Henning, F. Salama, “Carbon in the universe”, Science, Vol. 282, pp. 2204-2210, 1998.
[42] Plastics Additives & Compounding: single-wall carbon nanotube。 2008年5月14日。取自http://www.tecogroups.com.tw
[43] 成會明, 張勁燕, “奈米碳管”, 五南圖書出版股份有限公司
[44] R. Saito et al., “Electronic structure of chiral graphene tubules”, Applied Physics Letters, Vol. 60, pp. 2204-2206, 1992.
[45] R. T. K. Baker, R. J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene”, Journal of catalysis, Vol. 26, pp. 51-62, 1972.
[46] Y. S. Park et al., “Low pressure synthesis of single-walled carbon nanotubes by arc discharge”, Synthetic Metals, Vol. 126, pp. 245-251, 2002.
[47] T. W. Ebbesen et al., “Purification of nanotubes”, Nature, Vol. 367, pp. 519-519, 1994.
[48] M. J. Yacaman et al., “Catalytic growth of carbon microtubules with fullerene structure”, Applied Physics Letters, Vol. 62, pp. 202-204, 1993.
[49] S. Lebedkin et al., “Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization”, Carbon, Vol. 40, pp. 417-423, 2002.
[50] A. Thess et al., “Crystalline ropes of metallic carbon nanotube”, Science, Vol. 273, pp. 483-487, 1996.
[51] R. Andrewsa, D. Jacques, “Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization”, Chemical Physics Letters, Vol. 303, pp. 467-475, 1999.
[52] 粘正勳:國立中央大學物理系。2008年5月16日,取自 http://www.ncu.edu.tw/~ncu7450/nanoedu/nanoeducation-course.php
[53] H. Lee et al., “Hydrogen plasma treatment on catalytic layer and effect of oxygen additions on plasma enhanced chemical vapor deposition of carbon nanotube”, Journal of Alloys and Compounds, Vol. 330-332, pp. 569-573, 2002.
[54] A. R. Biris et al., “Effect of hydrogen on the growth and morphology of single wall carbon nanotubes synthesized on a Fe-Mo/MgO catalytic system”, Physics Letters A, Vol. 372, pp. 3051-3057, 2008.
[55] S. M. Sze, “semiconductor devices: physics and technology”, John Wiley & Sons Inc, 1985.
[56] R. Martel et al., “Carbon Nanotube Field-Effect Transistors and Logic Circuits”, 39th Design Automation Conference (DAC'02), pp. 94, 2002.
[57] R. Martel et al., “Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes”, Physical Review Letters, Vol. 87, pp. 256805- 256809, 2001.
[58] V. Derycke et al., “Controlling doping and carrier injection in carbon nanotube transistors”, Applied Physics Letters, Vol. 80, pp. 2773-2775, 2002.
指導教授 丁志華、黃豐元
(Jyh-Hua Ting、Fuang-Yuan Huang)
審核日期 2008-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明