博碩士論文 953203054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:3.235.105.97
姓名 吳信昌(Hsin-Chang Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 具渦流產生器之散熱鰭片實驗研究
(A study of cooling fin with vortex generators)
相關論文
★ 冷卻水溫度與冰水溫度對離心式冰水主機性能影響之實驗分析★ 不同結構與幾何形狀對熱管性能之影響
★ 油冷卻器熱傳與壓降性能實驗分析★ 水對冷媒R22在板式熱交換器內之性能測試分析
★ 水對水在不同板片型式之板式熱交換器性能測試分析與比較★ 油冷卻器性能測試分析與比較
★ 空調機用水簾式暨光觸媒空氣清淨機 研製及測試★ 水對空氣在板式熱交換器之性能測試分析
★ 板片入出口及入出口管路壓降估計對板式熱交換器壓降性能影響分析★ 微熱交換器之設計與性能測試
★ 板式熱交換器之入出口壓降實驗分析★ 液體冷卻系統中之微熱交換器性能分析與改良
★ 直接模擬蒙地卡羅法於高低速流場之模擬★ 液體微熱交換器之熱傳增強研究
★ 冷媒R22在板式熱交換器內之凝結熱傳及壓降性能實驗分析★ 不同參數對燒結式熱管性能之影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗主要將渦流產生器應用於平板散熱鰭片上。利用渦流產生器所
產生的渦流破壞邊界層,增加鰭片散熱效果。使用三角形翼對為設計基礎,設計出不同排列方式。並且為了得知鰭片間距對具渦流產生器散熱鰭片的影響,分別設計1.38mm 以及1.85mm 兩種不同鰭片間距。各式具渦流產生器散熱鰭片性能,經由實驗測試並討論。在相同流量情況下,渦流產生器的數目愈多,阻力越多,壓降就越大。
當鰭片間距為1.85mm 而且高流速高加熱量情況下,兩列渦流產生器散熱鰭片,因為上面空氣帶動中間流體流動,而產生較強渦流,有較佳的熱傳性能。空氣流速為5m/s 時,渦流產生器都能有效產生渦流,使鰭片整體熱傳係數增加。鰭片間距為1.85mm 三排渦流產生器在低流速時,會有比三列渦流產生器還低的熱阻。但是在高流速時,三列渦流產生器還是有較低的熱阻值。本文藉由實驗得知會影響具渦流產生器散熱鰭片的參數,可以根據應用情況的不同,選擇不同形式之具渦流產生器散熱鰭片。
摘要(英) This study is trying to develop a new kind fin, which were used the theory of vortex generators. Because the longitudinal vortices can destroy boundary layer and increase heat transfer by vortex. Experiment use with triangular winglet to for the design basis, design different ways of arranging. In order to understand the influence by the fin pitch, there are two kinds of fin pitch, which wide were 1.38 mm and 1.85 mm. The heat transfer characteristics of vortex generators were investigated experimentally.
In the same flow rate, the number of vortex generators is more, the more obstruction is, and pressure drop is the greater. For fin pitch 1.85mm and high velocity of flow and high situation of heating, two row vortex generators is
better heat performance. Because the air above drives the middle fluid to flow, it can produce stronger vortex. When the velocity of flow of air is 5m/s, vortex generators can produce vortex effectively, and increase heat transfer coefficient. Fin pitch 1.85mm, three line vortex generators is lower thermal resistance than three row vortex generators in low velocity of flow. But in the high velocity of flow, three row vortex generators have lower thermal resistance value. In this article, some parameters which will influence the vortex generators were understood by experiment, we can choose the different types of vortex
generators by judging the way of application.
關鍵字(中) ★ 渦流產生器
★ 平板
★ 三角形翼對
關鍵字(英) ★ triangular winglet
★ plate
★ vortex generators
論文目次 摘要 i
abstract ii
目 錄 iii
表目錄 v
圖目錄 vi
符 號 說 明 viii
第一章、前言 1
1.1 研究動機與背景 1
1.2 研究目的 1
第二章、文獻回顧 5
2.1 幾何形狀 5
2.2 攻角、傾角 6
2.3 排列方式與數量 7
2.4 可視化觀測 8
2.5 總結 9
第三章、實驗方法 17
3.1 渦流產生器設計 17
3.1.1 幾何尺寸 17
3.1.2 渦流產生器排列方式 18
3.1.3 渦流產生器數目 18
3.2 具渦流產生器散熱鰭片製作 19
3.3 實驗系統 19
3.3.1 測試段 19
3.3.2 風洞測試系統 20
3.3.3 模擬加壓平台 20
3.4 實驗量測儀器與設備 21
3.4.1 溫度量測 21
3.4.2 差壓測量 21
3.4.3 流量測量 22
3.4.4 資料擷取系統 22
3.5 實驗步驟 23
3.6 數據換算 23
3.6.1 加熱瓦數 23
3.6.2 熱傳係數 23
3.6.3 熱阻換算 25
3.6.4 泵動力 25
第四章、實驗結果與討論 36
4.1 具渦流產生器散熱鰭片之壓降特性 36
4.2 具渦流產生器散熱鰭片之熱傳特性 37
4.2.1 具渦流產生器散熱鰭片之熱對流係數 37
4.2.2 具渦流產生器散熱鰭片之Nu 39
4.2.3 具渦流產生器散熱鰭片之熱阻 41
4.3 具渦流產生器散熱鰭片之熱傳性能比較 42
第五章、結論 66
參考文獻 67
附錄、實驗誤差分析 70
參考文獻 Biswas, G., Torii, K., Fujii, M., and Nishino, K., 1992, “Numerical and experimental determination of flow structure and heat transfer effects of longitudinal vortices in a channel flow,” International Journal Heat and
Mass Transfer, Vol. 39, pp. 3441-3451.
Chen, Y., Fiebig, M., and Mitra, N. K., 1998, “Heat transfer enhancement of a finned oval tube with punched longitudinal vortex generators in-line,”International Journal of Heat and Mass Transfer, Vol. 41, pp. 4151-4166.
Edwards, F. J., and Alker, C. J. R., 1974, “The improvement of forced surface heat transfer using surface protrusions in the form of cubes and vortex generators,” Fifth International Heat Transfer conference, Tokyo, pp.
244-248.
Ferrouillat, S., Tochon, P., Garnier, C., and Peerhossaini H., 2006, “Intensification of heat-transfer and mixing in multifunctional heat exchangers by artificially generated streamwise vorticity,” Applied Thermal Engineering, Vol. 26, pp. 1820-1829. Fiebig, M., Kallweit, P., Mitra, N. K., and Tiggelbeck, ST., 1991, “Heat transfer enhancement and drag by longitudinal vortex generators in channel flow,”
Experimental Thermal and Fluid Science, Vol. 4, pp. 103-114.
Fiebig, M., 1995, “Embedded vortices in internal flow: heat transfer and pressure loss enhancement,” International Journal of Heat and Fluid Flow, Vol. 16, pp. 376-388. Gentry, M. C., and Jacobi, A. M., 2002, “Heat transfer enhancement by delta-wing-generated tip vortices in flat-plate and developing channel flows,” Journal of Heat Transfer, Vol. 124, pp. 1158-1168.
Hiravennavar, S. R., Tulapurkara, E. G., and Biswas, G., 2007, “A note on the flow and heat transfer enhancement in a channel with built-in winglet pair,”
International Journal of Heat and Fluid Flow, Vol. 28, pp. 299-305. Holman, J. P., 2001, Experimental Methods for Engineers, McGraw-Hill, New York.
Kim, E. J., and Yang, S., 2002, “An experimental study of heat transfer characteristics of a pair of longitudinal vortices using color capturing technique,” International Journal of Heat and Mass Transfer, Vol. 45, pp. 3349-3356.
Leu, J. S., Wu, Y. H. and Jang, J. Y., 2004, “Heat transfer and fluid flow analysis in plate-fin and tube eat exchangers with a pair of block shape vortex
generators,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 4327-4338.
Saini, M., and Webb, R. L., 2003, ”Heat rejection limits of air cooled plane fin heat sinks for computer cooling,” IEEE Transactions on components and packaging technologies”, Vol. 26, pp. 71-79.
Tanaka, T., Itoh, M., Hatada, T., and Matsushima, H., 2003, “Influence of Inclination Angle, Attack Angle, and Arrangement of Rectangular Vortex Generators on Heat Transfer Performance,” Heat Transfer-Asian Research,
Vol. 32, pp. 253-267.
Tiggelbeck, ST., Mitra, N., and Fiebig, M., 1992, “Experimental investigation of heat transfer enhancement and flow losses in a channel with double rows of
longitudinal vortex generators,” International Journal of Heat and Mass Transfer, Vol. 36, pp. 2327-2337.
Tiggelbeck, ST., Mitra, N., and Fiebig, M., 1993, “Flow structure and heat transfer in a channel with multiple longitudinal vortex generators,”
Experimental Thermal and Fluid Science, Vol. 5, pp. 425-436.
Tiggelbeck, ST., Mitra, N., and Fiebig, M., 1994, “Comparison of wing-type
vortex generators for heat transfer enhancement in channel flows, ” Journal
of Heat Transfer, Vol. 116, pp. 880-885.
Wang, C. C., Lin, J. Lo, and Liu, Y. M., 2002, “Flow visualization of wave-type
vortex generators having inline fin-tube arrangement,” International
Journal of Heat and Mass Transfer, Vol. 45, pp. 1933-1944.
Wang, C. C., Lin, J. Lo, and Wei, Y. C., 2002, “Flow visualization of annular
and delta winglet vortex generators in fin-and-tube heat exchanger
application,” International Journal of Heat and Mass Transfer, Vol. 45, pp.
3803-3815.
Wang, Q., Chen, Q., Wang, L., Zeng, M., Huang, Y., and Xiao, Z., 2007,
“Experimental study of heat transfer enhancement in narrow rectangular channel with longitudinal vortex generators,” Nuclear Engineering and Design, Vol. 237, pp. 686-693.
Wu, M. J., and Tao, W. Q., 2007, “Investigation on laminar convection heat transfer in fin-and-tube heat exchanger in aligned arrangement with longitudinal vortex generator from the viewpoint of field synergy principle,” Applied Thermal Engineering, Vol. 27, pp. 2609-2617.
U.S. Air Force Avionics Integrity Program (AVIP), 1989.
Super Micro Computer, Inc., 2006, http://www.supermicro.com
王啟川,2003,熱交換設計(I) ,二版,五南出版社,台北。
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2008-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明