博碩士論文 953203094 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.143.237.52
姓名 馬大翔(Da-Shiang Ma)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 設計與製作圓錐平板型生物反應器以探討剪應力對大鼠骨髓幹細胞生長與型態之影響
(Study of the Effects of Shear Stresses on the Growth and Morphology of Rat Bone Marrow Stem Cells with the Cone-Plate Bioreactor)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究設計圓錐平板式生物反應器,利用圓錐旋轉時帶動培養液產生剪應力,對平板上的細胞施予可控制的定量剪應力刺激值。使用此生物反應器,對大鼠骨髓幹細胞進行1天14小時的培養,並對其分別施加1.4、5.5、11、16.4 dyn/cm2的剪應力刺激。結果發現施予剪應力刺激的細胞其生長速度受到抑制,而刺激強度超過1.4 dyn/cm2後,細胞型態會隨著刺激強度增加而逐漸變差,細胞存活數目減少。此外,在1.4 dyn/cm2的4小時刺激強度下,將培養時間延長至3天又14小時,亦發現細胞生長速度受到抑制,且於細胞型態上,出現細胞開始拉長並有方向性排列的情況。
實驗結果顯示,本研究設計的圓錐平板裝置可穩定提供剪應力機械刺激,且能於體外穩定培養細胞。未來,對於經過剪應力刺激已出現形態變化的細胞,可於生化方面進行相關檢測,並給予細胞不同強度或週期性的剪應力刺激,觀察細胞增殖數量的生長變化。
摘要(英) We designed a cone-plate bioreactor. It produces fluid shear stress by rotating the cone that drives the culture medium to flow in a circular way. Rat bone marrow stem cells were cultured on coverslips placed on the plate. The cells experienced the shear stress of 1.4、5.5、11、16.4 dyn/cm2 respectively for 4 hours in 1 day and 14 hours in the bioreactor.
Results showed the shear stresses changed the morphology and inhibited the cell growth when the shear magnitudes were over 1.4 dyn/cm2. We also found that, by applying shear stress of 1.4 dyn/cm2 for 4 hours within 3 days and 14 hours, the cells became elongated in shape and aligned to each other.
The study demonstrates that the cone-plate bioreactor can provide well-defined stimulus to the cells cultured in vitro. The growth inhibition and shape changes of the cells by shears shall merit further research efforts to classify the underlying mechanisms and biochemical pathways.
關鍵字(中) ★ 幹細胞
★ 圓錐平板裝置
★ 生物反應器
★ 剪應力
★ 組織工程
關鍵字(英) ★ Stem Cells
★ Cone-Plate Bioreactor
★ Bioreactor
★ Shear Stress
★ Tissue engineering
論文目次 中文摘要………………………… І
英文摘要…………………………II
誌謝………………………………Ⅲ
目錄………………………………IV
圖目錄………………………. …VII
第一章 緒論
1.1 前言 ………………………………………………………1
1.2 文獻回顧……………………………………………………4
1.2.1 生物反應器與剪應力刺激機械刺激……………………4
1.2.2 剪應力生物反應器………………………………………7
1.3 研究動機……………………………………………………9
第二章 生物反應器設計與製作
2.1 設計前言…………………………………………………………………10
2.2 剪應力產生原理以及剪應力計算…………………………10
2.2.1 剪應力產生原理…………………………………………10
2.2.2 定常剪應力計算…………………………………………11
2.3 培養室設計…………………………………………………12
2.3.1 圓錐平板尺寸設計………………………………………12
2.3.2 系統剪應力性能表現……………………………………14
2.4 生物反應器機構設計………………………………………15
2.4.1 培養環境系統……………………………………………17
2.4.2 馬達驅動裝置與馬達箱體………………………………18
2.4.3 承載平板空間……………………………………………25
2.4.4 圓錐平板間距定位調整…………………………………26
第三章 實驗方法
3.1 細胞來源……………………………………………………29
3.2 玻片滅菌程序………………………………………………29
3.3 細胞種植……………………………………………………31
3.4 實驗前置準備………………………………………………31
3.5 生物反應器系統培養效能與細胞相容性測試……………33
3.6 實驗步驟……………………………………………………36
3.7 系統操作步驟………………………………………………38
3.8 實驗條件……………………………………………………39
3.9 馬達轉速設定………………………………………………40
3.10 結果分析…………………………………………………40
3.10.1 細胞型態觀察…………………………………………41
3.10.2 細胞數量計數…………………………………………41
第四章 結果與討論
4.1 剪應力強度對細胞生長狀態的影響………………………43
4.1.1 剪應力刺激強度:1.4 dyn/cm2............................................44
4.1.2 剪應力刺激強度:5.5 dyn/cm2............................................46
4.1.3 剪應力刺激強度:11 dyn/cm2............................................49
4.1.4 剪應力刺激強度:16.4 dyn/cm2............................................51
4.2 剪應力對細胞型態的… …………………………………54
第五章 結論與未來展望………………………………………63
參考文獻..…………………………………………………………………65
附錄
實驗試藥及儀器………………………………………………72
參考文獻 Angele, P., Yoo, J.U., Smith, C., Mansour, J., Jepsen, K.J., Nerlich, M., and Johnstone, B., 2003. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. Journal of Orthopaedic Research 21, 451-457.
Bao, X., Clark, C.B., and Frangos, J.A., 2000. Temporal gradient in shear-induced signaling pathway:involvement of MAP kinase, c-fos, and connexin 43. American Journal of Physiology- Heart and Circulatory Physiology 278, H1598-H1605.
Blackman, B.R., Barbee, K.A., and Thibault, L.E., 2000. In vitro cell shearing device to investigate the dynamic response of cells in a controlled hydrodynamic environment. Biomedical Engineering Society 28, 363-372.
Blackman, B.R, Garc?a-Carde?a, G., and Gimbrone, M.A., 2002. A new in vitro model to evaluate differential responses of endothelial cells to simulated arterial shear stress waveforms. Journal of Biomechanical Engineering 124, 397-407.
Botchwey, E.A., Dupree, M.A., Pollack, S.R., Levine, E.M., and Laurencin, C.T., 2003. Tissue engineered bone:measure of nutrient transport in three-dimensional matrices. Journal of Biomedical Materials Research Part A, 357-367.
Breen, L.T., McHugh, P.E., McCormack, B.A., Muir, G., Quinlan, N.J., Heraty, K.B., and Murphy, B.P., 2006. Development of a novel bioreactor to apply shear stress and tensile strain simultaneously to cell monolayers. Review of Scientific Instruments 77, 104301-104309.
Brown, T.D., 2000. Techniques for mechanical stimulation of cells in vitro: A review. Journal of Biomechanics 33, 3-14.
Bussolari, S.R., Dewey, C.F., and Gimbrone, M.A., 1981. Apparatus for subjecting living cells to fluid shear stress. Review of Scientific Instruments 53, 1851-1854.
Butler, D.L., 2000. Functional tissue engineering: the role of biomechanics. Journal of Biomechanical Engineering 122, 570-575.
Chaturani, P. and Narasimman, S., 1990. Flow of power-law fluids in cone-plate viscometer. Acta Mechanica 82, 197-211.
Chen, K.D., Li, Y.D., Kim, M., Li, S., Yuan, S., Chien, S., and Shyy, J.Y.J., 1999. Mechanotransduction in response to shear stress. The Journal of Biological Chemistry 274, 18393-18400.
Cheng, D.C.-H., 1968. The effect of secondary flow on the viscosity measurement using a cone-and-plate viscometer. Chemical Engineering Science 23, 895-899.
Chung, C.A., Tzou, M.R. and Ho, R.W., 2005. Oscillatory flow in a cone-and-plate bioreactor. Journal of Biomechanical Engineering 127, 601-610.
Chung, C.A., Weng, C.S. and Tu, M.Z., 2006. The periodical Shear environment of a cone-and-plate bioreactor. Journal of Fluids Engineering 128, 388-397.
Cox, D.B., 1962. Radial flow in the cone-plate viscometer. Nature 193, 670.
Das, P., Schurman, D.J. and Simth, R.L., 1997. Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear. Journal of Orthopaedic Research 15, 87-93.
Datta, N., Pham Q.P., Sharma, U., Sikavitsas, V.L., Jansen, J.A., and Mikos, A.G., 2006. In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proceeding of the National Academy of Sciences of the United States of America 103, 2488-2493.
Dewey, C.F., Bussolari, S.R., Gimbrone, M.A. and Davies, P.F., 1981. The dynamic response of vascular endothelial cells to fluid shear stress. Journal of Biomechanical Engineering 103, 177-185.
Einav, S., Dewey, C.F., and Hartenbaum, H., 1994. Cone-and-plate apparatus: A compact system for studying well-characterized turbulent flow fields. Experiments in Fluids 16,196-202.
Engelmayr Jr, G.C., Sales, V.L., Mayer Jr, J.E., and Sacks, M.S., 2006. Cyclic flexure and laminar flow synergistically accelerate mesenchymal stem cell-mediated engineered tissue formation: Implications for engineered heart valve tissues. Biomaterials 27, 6083-6095.
Garcia, A.M., Lark, M.W., Trippel, S.B. and Grodzinsky, A.J., 1998. Transport of tissue inhibitor of metalloproteinases-1 through cartilage: Contributions of fluid flow and electrical migration. Journal of Orthopaedic Research 16, 734-742.
Goldestein, A.S, Juarez, T.M, Helmke, C.D, Gustin, M.C., and Mikos, A.G., 2001. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22, 1279-1288.
Griffith, L.G. and Naughton, G., 2002. Tissue engineering-current challenges and expanding opportunities. Science 295, 1009-1016.
Haseltine, W.A., 2001. The emergence of regenerative medicine: A new field and a new society. The Journal of Regenerative Medicine 2, 17-23.
Huang, C.Y., Hagar, K.L., Frost, L.E. and Sun, Y., 2004. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22, 313-23.
Isenberg, B.C, Williams, V., and Tranquillo, R.T., 2006. Endothelialization and flow conditioning of fibrin-based media equivalents. Annuals of Biomedical Engineering 34, 971-985.
Jiang, G.L., White, C.R., Stevens, H.Y., and Frangos, J.A., 2002. Temporal gradients in shear stimulate osteoblastic proliferation via ERK 1/2 and retinoblastoma protein. American Journal of Physiology-Endocrinology and Metabolism 283, E383-E389.
Knippenberg, M., Helder, M.N., Doulabi ,B.Z., Semeins, C.M., Wuisman, J.M, and Nulend, J.K., 2005. Adipose tissue-derived mesenchymal stem cell acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Engineering 11,1780-1788.
Knothe Tate, M.L., Falls, T.D., Mcbride, S.H., Radhika, A., and Knothe, U.R., 2008. Mechanical modulation of osteochondroprogenitor cell fate. The International Journal of Biochemistry and Cell Biology 40, 2720-2738.
Kobayashi, N., Yasu, T., Ueba, H., Sata, M., Hashimoto, S., Kuroki, M., Saito, M. and Kawakami, M., 2004. Mechanical stress promotes the expression of smooth muscle-like properties in marrow stromal cells. Experimental Hematology 32, 1238-1245.
Kreke, M.R., and Goldstein, A.S., 2004. Hydrodynamics shear stimulates osteocalcin expression but not proliferation of bone marrow stromal cells. Tissue Engineering 10, 780-787.
Langer, R. and Vacanti, J.P., 1993. Tissue Engineering. Science 26, 920-926.
Lee, A.A., Graham, D.A., Cruz, S.D., Ratcliffe, A., and Karlon, W.J., 2002. Fluid shear stress-induced alignment of cultured vascular smooth muscle cells. Journal of Biomechanical Engineering 124, 37-43.
Lee, W.C, Maul, T.M, and Vorp, D.A, 2007. Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomechanics and Modeling in Mechanobiology 6, 265-273.
Martin, I., Wendt, D., and Heberer, M., 2004. The role of bioreactor in tissue engineering. TRENDS in Biotechnology 22, 80-86.
McBeath, R., Pirone, D.M, Nelson, C.M, Bhadriraju, K., and Chen, C.S., 2004. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell 6, 483-495.
McBride, S.H, Falls, T., and Knothe Tate, M.L., 2008. Modulation of stem cell shape and fate B:Mechanical modulation of stem cell shape and gene expression. Tissue Engineering 14, 1573-1580.
McKinley, G.H., Oztekin, A., Byars, J.A. and Brown, R.A., 1995. Self-similar instabilities inelastic flows between a cone and a plate. Journal of Fluid Mechanics Digital Archive 285, 123-164.
Meinel, L., Karageorgiou, V., Fajardo, R., Snyder, B., Shinde-Patil, V., Zichner, L., Kaplan, D., Langer, R. and Vunjak-Novakovic, G., 2004. Bone tissue engineering using human mesenchymal stem cell: Effects of scaffold material and medium flow. Annals of Biomedical Engineering 32, 112-122.
Mohtai, M., Gupta, M.K., Doulon, B., Ellison, B., Cooke, J., Gelbbons, G., Schurman, D.J. and Smith, R.L., 1996. Expression of interleukin-6 in osteoarthritic chondrocytes and effects of fluid-induced shear on this expression in normal human chondrocytes in vitro. Journal of Orthopaedic Research 14, 67-73.
Mooney, M., and Ewart, R.H., 1934. The conicylindrical viscometer. Physis 5, 350-354.
O’Cearbhaill, E.D., Punchard, M.A., Murphy, M. Barry, F.P., McHugh, P.E., and Barron, V., 2008. Response of mesenchymal stem cell to the biomechanical environment of the endothelium on a flexible tubular silicone substrate. Biomaterials 29, 1610-1619.
Park, J.S., Chu, J.S., Cheng, C., Chen, F., Chen, D. and Li, S., 2004. Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnology and Bioengineering 88, 359-368.
Pelech, I. and Shapiro, A.H., 1964. Flexible disk rotating on a gas film next to a wall. Journal of Applied Mechanics-Transactions of the ASME 31, 577–584.
Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S. and Marshak, D.R., 1999. Multilinearge potential of adult human mesenchymal stem cells. Science 284, 143-147.
P?rtner, R., Nagel-Heyer, S., Goepfert, C., Adamietz, P., and Meenen, N.M., 2005. Bioreactor design for tissue engineering. Journal of Bioscience and Bioengineering 100, 235-245.
Rabbany, S.Y., Heissig, B., Hattori, K. and Rafii, S., 2003. Molecular pathways regulating mobilization of marrow-derived stem cells for tissue revascularization. TRENDS inBiotechnology 9, 109-117.
Saxena, A.K., 2005. Tissue engineering: Resent concepts and strategies. Journal of Indian Association of Pediatric Surgeons 10, 14-19.
Sdougos, H.P., Bussolari, S.R., and Dewey, C.F., 1984. Secondary flow and turbulence in a cone-and-plate device. Journal of Fluid Mechanics 138, 379-404.
Shieh, S. J., Terada, S. and Vacanti, J.P., 2004. Tissue engineering auricular reconstruction: In vitro and in vivo studies. Biomaterials 25, 1545-57.
Simmons, C.A., Matlis, S., Thornton, A.J., Chen, S., Wang, C.Y. and Mooney, D.J., 2003. Cyclic strain enhance matrix minerlization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK 1/2) signaling pathway. Journal of Biomechanics 36, 1087-1096.
Smith, R.L., Carter, D.R., and Schurman, D.J., 2004. Pressure and shear differentially alter human articular chondrocyte metabolism. Clinical Orthopaedics and related Reseach 427S, S89-S95.
Wang, H., Riha, G.M., Yan, S., Li, M., Chai, H., Yang, H., Yao, Q. and Chen, C., 2005. Shear stress induces endothelial differentiation from a murine embroyonic mesenchymal progenitor cell line. Arterioscler Thrombosis and Vascular Biology 25, 1817-1823.
Wang, H., Riha, G.M. Yan, S., Li, M., Chai, H., Yang, H., Yao, Q., and Chen, C., 2008. Shear stress induces endothelial differentiation from a murine embryonic mesenchymal progenitor cell line. Arteriosclerosis, Thrombosis, and Vascular Biology 25, 1817-1823.
Watt, F.M. and Hogan, B.L., 2000. Out of Eden: Stem cells and their niches. Science 287, 1427-1430.
王文甫,2008,圓錐平板型生物反應器之設計與製作,中央大學機械工程碩士論文。
李宜書,2001,「淺談組織工程」,物理雙月刊,廿四卷三期。
呂明憲,2005,週期式圓錐平板裝置之設計與量測,中央大學機械工程學系碩士論文。
翁昶生,2004,圓錐平板型生物反應器脈動式二次流場研究,中央大學機械工程碩士論文。
蔡瑞芳,2004,「幹細胞與組織工程」,後基因體時代之生物技術,第十九章,281-294。
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2009-2-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明