博碩士論文 953204004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:52.15.189.48
姓名 鍾承軒(Cheng-hsuan Chung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 新穎太陽能電池基板表面粗糙化結構之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究
★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究
★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用一簡單容易且快速有效的方法,以化學溶液蝕刻法在噴砂之玻璃與矽晶基板上,製備表面粗糙化結構。在表面粗糙化之玻璃基板實驗中,噴砂玻璃在初始蝕刻時,其光穿透率會先下降,而後光穿透率會隨著蝕刻時間增加而上升,光散射率則是開始蝕刻後便開始上升,蝕刻至8分鐘達最高值。在本研究中,蝕刻8分鐘之表面粗糙化玻璃基板具備平均光穿透92.5 %、平均光散射63.3 %且霧度達68.4 %之光學性質。此外,鍍製ZnO:Al透明導電薄膜在表面粗糙化結構的玻璃基板上,與未鍍製ZnO:Al薄膜之表面粗糙化玻璃,在光學性質上具有相同之趨勢。
經由噴砂處理與化學溶液蝕刻製備之表面粗糙化結構矽晶基板,其反射率下降幅度相當顯著;進一步調變蝕刻時間,將矽晶基材蝕刻成碗狀之表面粗糙化結構,在400-800 nm波長範圍內,平均光反射率可從24 %降低至不到2 %。本研究所提出之製程可製備出具抗反射效果之碗狀結構矽晶基板,且在高效能矽基太陽能電池的應用上有非常大的發展潛力。
摘要(英) In this study, we propose a facile and efficient method to produce textured surfaces on glass and silicon substrates, which is based on the sandblasting with a wet etching technique. The transmittance of the textured glass was found to decrease with etching time first then increase. The intensity of light scattering from the textured glass was increased with etching time, and reached the maximum value at the etching time of 8 min. The transmittance, scattering, and haze values of the textured glass substrate after etching at 8 min were measured to be about 92.5 %, 63.3 %, and 68.4 %, respectively. In addition, the optical properties of the textured glass substrates after depositing ZnO:Al thin films show the same trend as these textured glass substrates.
After appropriate sandblasting and wet etching treatments, the optical reflectance of the textured silicon substrates can be significantly reduced. By adjusting the etching time, the average reflectance measured in the wavelength range of 400 to 800 nm for the bowl-like textured Si substrates can be gradually decreased from 24 % to less than 2 %. Therefore, the process proposed in the study and the bowl-like antireflection structures produced may have potential applications in high-efficiency Si-based solar cells.
關鍵字(中) ★ 表面粗糙化
★ 化學濕式蝕刻
★ 鋁摻雜氧化鋅薄膜
★ 太陽能電池
關鍵字(英) ★ Surface textured
★ Chemical etching
★ ZnO:Al thin film
★ Solar cell
論文目次 目錄
第一章 前言及文獻回顧 1
1.1 前言 1
1.2 太陽能電池 2
1.2.1 矽晶基板太陽能電池 2
1.2.2 矽基薄膜太陽能電池 3
1.3 透明導電氧化物薄膜 4
1.4 表面粗糙化結構 5
1.4.1 透明導電薄膜表面粗糙化 6
1.4.2 玻璃基板表面粗糙化 7
1.4.3 矽晶基板表面粗糙化 8
1.5 研究動機與目的 9
第二章 實驗步驟與分析儀器 11
2.1 實驗步驟 11
2.1.1 利用噴砂機製備表面粗糙化之玻璃與矽晶基板 11
2.1.2 化學溶液蝕刻法製備碗狀之表面粗糙化基板 11
2.1.3 ZnO:Al薄膜沉積在表面粗糙化玻璃基板上之特性分析 12
2.2 分析儀器 12
2.2.1 低真空掃描式電子顯微鏡 12
2.2.2 紫外-可見光光譜儀 12
2.2.3 表面輪廓儀 13
2.2.4 四點探針 13
2.2.5 霍爾效應量測 13
2.2.6 X光繞射分析 14
2.2.7 多角度紫外-可見光-近紅外光光譜儀 14
第三章 實驗結果與討論 15
3.1 表面粗糙化玻璃基板之製備與探討 15
3.1.1 噴砂處理之玻璃基板表面結構 15
3.1.2 化學溶液蝕刻噴砂玻璃基板之表面粗糙化結構分析 15
3.1.3 表面粗糙化之玻璃基板結構對於光學特性之影響 17
3.1.4 濺鍍ZnO:Al透明導電薄膜在表面粗糙化玻璃基板之特性與結構分析 19
3.2 製備低反射之表面粗糙化結構之矽晶基板 22
3.2.1 矽晶基板經由噴砂處理之表面結構 22
3.2.2 以化學溶液蝕刻製備表面粗糙化之矽晶基板 22
3.2.3 矽晶基板之表面粗糙化結構對反射率之影響分析 23
第四章 結論 26
參考文獻 28
表目錄 33
圖目錄 37
參考文獻 [1] J. D. Haigh, “The Sun and the Earth’s Climate”, Living Rev. Sol. Phys., 4 (2007) 2.
[2] M. Afzaal and P. O’Brien, “Recent Developments in II-VI and III-VI Semiconductors and their Applications in Solar Cells”, J. Mater. Chem., 16 (2006) 1597-1602.
[3] R. R. King, D. Bhusari, D. Larrabee, X.-Q. Liu, E. Rehder, K. Edmondson, H. Cotal, R. K. Jones, J. H. Ermer, C. M. Fetzer, D. C. Law, and N. H. Karam, “Solar Cell Generations Over 40 % Efficiency”, Prog. Photovolt: Res. Appl., 20 (2012) 801-815.
[4] D. Wohrle and D. Meissner, “Organic Solar Cells”, Adv. Mater., 3 (1991) 129-138.
[5] J. Gong, J. Liang, and K. Sumathy, “Review on Dye-Sensitized Solar Cells (DSSCs): Fundamental Concepts and Novel Materials”, Renew. Sust. Energ. Rev., 16 (2012) 5848-5860.
[6] J. Zhao, A. Wang, and M. A. Green, “24.5 % Efficiency Silicon PERT Cells on MCZ Substrates and 24.7 % Efficiency PERL Cells on FZ Substrates”, Prog. Photovolt: Res. Appl., 7 (1999) 471-474.
[7] J. Zhao, A. Wang, M. A. Green, and F. Ferrazza, “19.8 % Efficient “Honeycomb” Textured Multicrystalline and 24.4 % Monocrystalline Silicon Solar Cells”, Appl. Phys. Lett., 73 (1998) 1991-1993.
[8] S. Tohoda, D. Fujishima, A. Yano, A. Ogane, K. Matsuyama, Y. Nakamura, N. Tokuoka, H. Kanno, T. Kinoshita, H. Sakata, M. Taguchi, and E. Maruyama, “Future Directions for Higher-Efficiency HIT Solar Cells Using a Thin Silicon Wafer”, J. non-cryst. Solids, 358 (2012) 2219-2222.
[9] T. Mishima, M.Taguchi, H. Sakata, and E. Maruyama, “Development Status of High-Efficiency HIT Solar Cells”, Sol. Energy Mater. Sol. Cells, 95 (2011) 18-21.
[10] M. T. Gutiérrez and C. Maffiotte, “Interface Analysis of Amorphous Silicon Solar Cell Structures”, Surf. Coat. Technol., 137 (2001) 175-180.
[11] P. K. Chang, P. T. Hsieh, F. J. Tsai, C. H. Lu, C. H. Yeh, N. F. Wang, and M. P. Houng, “High Efficiency Amorphous Silicon Solar Cells with High Absorption Coefficient Intrinsic Amorphous Silicon Layers”, Thin Solid Films, 520 (2012) 5042-5045.
[12] J. Meier, R. Flückiger, H. Keppner, and A. Shah, “Complete Microcrystalline p-i-n Solar Cell - Crystalline or Amorphous Cell Behavior”, Appl. Phys. Lett., 65 (1994) 860-862.
[13] H. Yue, A. Wua, X. Zhang, and T. Li, “New Two-Step Growth of Microcrystalline Silicon Thin Films without Incubation Layer”, J. Cryst. Growth, 322 (2011) 1-5.
[14] A. Shah, J. Meier, E. Vallat-Sauvain, C. Droz, U. Kroll, N. Wyrsch, J. Guillet, and U. Graf, “Microcrystalline Silicon and ‘Micromorph’ Tandem solar cells”. Thin Solid Films, 403-404 (2002) 179-187.
[15] T. Söderström, F.-J. Haug, V. Terrazzoni-Daudrix, and C. Ballif, “Flexible Micromorph Tandem a-Si/µc-Si Solar Cells”, J. Appl. Phys., 107 (2010) 014507.
[16] J. Y. Kwon, D. H. Lee, M. Chitambar, S. Maldonado, A. Tuteja, and A. Boukai, “High Efficiency Thin Upgraded Metallurgical-Grade Silicon Solar Cells on Flexible Substrates”, Nano Lett., 12 (2012) 5143-5147.
[17] V. Avrutin, N. Izyumskaya, and H. Morkoç, “Semiconductor Solar Cells: Recent Progress in Terrestrial Applications”, Superlattices Microstruct., 49 (2011) 337-364.
[18] A. V. Shah, H. Schade, M. Vanecek, J. Meier1, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, and J. Bailat, “Thin-Film Silicon Solar Cell Technology”, Prog. Photovolt: Res. Appl., 12 (2004) 113-142.
[19] F. Toor, H. M. Branz, M. R. Page, K. M. Jones, and H. C. Yuan, “Multi-Scale Surface Texture to Improve Blue Response of Nanoporous Black Silicon Solar Cells”, Appl. Phys. Lett., 99 (2011) 103501.
[20] A. Hongsingthong, A. Aino, P. Sichanugrist, M. Konagai, H. Kuramochi, R. Akiike, H. Iigusa, K. Utsumi, and T. Shibutami, “Development of Novel Al-Doped Zinc Oxide Films Fabricated on Etched Glass and Their Application to Solar Cells”, Jpn. J. Appl. Phys., 51 (2012) 10NB09.
[21] C. K. Huang, K. W. Sun, and W.-L. Chang, “Efficiency Enhancement of Silicon Solar Cells Using a Nano-Scale Honeycomb Broadband Antireflection Structure”, Opt. Express, 20 (2011) A85-A93.
[22] 吳建良, 楊宏仁, 黃建福, 葉峻銘, 陳頤承, “透明導電氧化物應用於矽薄膜太陽電池前電極之技術發展”, 工業材料, 281 (2010) 118-122.
[23] D. S. Kim, J. H. Park, B. K. Shin, K. J. Moon, M. Son, M. H. Ham, W. Lee, and J. M. Myoung, “Effect of Deposition Temperature on the Properties of Al-Doped ZnO Films Prepared by Pulsed DC Magnetron Sputtering for Transparent Electrodes in Thin-Film Solar Cells”, Appl. Surf. Sci., 259 (2012) 596-599.
[24] J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and Light Trapping in Silicon Thin Film Solar Cells”, Sol. Energy, 77 (2004) 917-930.
[25] H. Zhu, J. Hüpkes, E. Bunte, and S.M. Huang, “Study of ZnO:Al Films for Silicon Thin Film Solar Cells”, Appl. Surf. Sci., 261 (2012) 268-275.
[26] C. B. Yan, X. L. Chen, F. Wang, J. Sun, D. K. Zhang, C. C. Wei, X. D. Zhang, Y. Zhao, and X. H. Geng, “Textured Surface ZnO:B/(Hydrogenated Gallium-Doped ZnO) and (Hydrogenated Gallium-Doped ZnO)/ZnO:B Transparent Conductive Oxide Layers for Si-Based Thin Film Solar Cells”, Thin Solid Films, 521 (2012) 249-252.
[27] J. Müller, G. Schöpe, O. Kluth, B. Rech, M. Ruske, J. Trube, B. Szyszka, X. Jiang, and G. Bräuer, “Upscaling of Texture-Etched Zinc Oxide Substrates for Silicon Thin Film Solar Cells”, Thin Solid Films, 392 (2001) 327-333.
[28] M. Bu, T. Melvin, G. J. Ensell, J. S. Wilkinson, and A. G. R. Evans, “A New Masking Technology for Deep Glass Etching and its Microfluidic Application”, Sens. Actuator A Phys., 115 (2004) 476-482.
[29] X. Li, T. Abe, and M. Esashi, “Deep Reactive Ion Etching of Pyrex Glass Using SF6 Plasma”, Sens. Actuator A Phys., 87 (2001) 139-145.
[30] W. Zhang, E. Bunte, F. Ruske, D. Köhl, A. Besmehn, J. Worbs, H. Siekmann, J. Kirchhoff, A. Gordijn, and J. Hüpkes, “As-Grown Textured Zinc Oxide Films by Ion Beam Treatment and Magnetron Sputtering”, Thin Solid Films, 520 (2012) 4208-4213.
[31] H. Ryu, P. K. Kim, and G. Lim, “Advanced Glass Etching Method Exhibiting the Controllable Etch Stop Using Metal Etchant”, J. Micromech. Microeng., 22 (2012) 125010.
[32] M. Kolli, M. Hamidouche, N. Bouaouadja, and G. Fantozzi, “HF Etching Effect on Sandblasted Soda-Lime Glass Properties”, J. Eur. Ceram. Soc., 29 (2009) 2697-2704.
[33] F. M. Ezz-Eldin, T. D. Abd-Elaziz, and N. A. Elalaily, “Effect of Dilute HF Solutions on Chemical, Optical, and Mechanical Properties of Soda-Lime-Silica Glass”, J. Mater. Sci., 45 (2010) 5937-5949.
[34] R. Barrio, N. González, J. Cárabe, and J. J. Gandía, “Optimisation of NaOH Texturisation Process of Silicon Wafers for Heterojunction Solar-Cells Applications”, Sol. Energy, 86 (2012) 845-854.
[35] Y. Fan, P. Han, P. Liang, Y. Xing, Z. Ye, and S. Hu, “Differences in Etching Characteristics of TMAH and KOH on Preparing Inverted Pyramids for Silicon Solar Cells”, Appl. Surf. Sci., 264 (2013) 761-766.
[36] H. H. Cheng, Y. Y. Chang, J. Y. Chu, D. Z. Lin, and Y. P. Chen, “Light Trapping Enhancements of Inverted Pyramidal Structures with the Tips for Silicon Solar Cells”, Appl. Phys. Lett., 101 (2012) 141113.
[37] K. Q. Peng and S. T. Lee, “Silicon Nanowires for Photovoltaic Solar Energy Conversion”, Adv. Mater., 23 (2011) 198-215.
[38] R. Ulbricht, R. Kurstjens, and M. Bonn, “Assessing Charge Carrier Trapping in Silicon Nanowires Using Picosecond Conductivity Measurements”, Nano Lett., 12 (2012) 3821-3827.
[39] S. H. Baek, B. Y. Noh, I. K. Park, and J. H. Kim, ”Fabrication and Characterization of Silicon Wire Solar Cells Having ZnO Nanorod Antireflection Coating on Al-Doped ZnO Seed Layer”, Nanoscale Res. Lett., 7 (2012) 29.
[40] D. Murias, C. Reyes-Betanzo, M. Moreno, A. Torres, A. Itzmoyotl, R. Ambrosio, M. Soriano, J. Lucas, and P. Roca i Cabarrocas, “Black Silicon Formation Using Dry Etching for Solar Cells Applications”, Mater. Sci. Eng. B, 177 (2012) 1509-1513.
[41] S. S. Bae, N. Prokopuk, N. J. Quitoriano, S. M. Adams, and R. Ragan, “Characterizing Defects and Transport in Si Nanowire Devices Using Kelvin Probe Force Microscopy”, Nanotechnology, 23 (2012) 405706.
[42] K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, “Texturing of Large Area Multi-Crystalline Silicon Wafers through Different Chemical Approaches for Solar Cell Fabrication”, Sol. Energy Mater. Sol. Cells, 92 (2008) 960- 968.
[43] B. González-Díaz, R. Guerrero-Lemus, B. Díaz-Herrera, N. Marrero, J. Méndez-Ramos, and D. Borchert, “Optimization of Roughness, Reflectance and Photoluminescence for Acid Textured mc-Si Solar Cells Etched at Different HF/HNO3 Concentrations”, Mater. Sci. Eng. B, 159-160 (2009) 295-298.
指導教授 鄭紹良(Shao-liang Cheng) 審核日期 2013-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明