博碩士論文 953204007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:34.239.179.228
姓名 楊智堯(Chih-Yao Yang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以三聚氰氯為單體的抗氯型奈米過濾膜
(Cyanuric chloride based chlorine-resistant nanofiltration membrane)
相關論文
★ 老鼠免疫球蛋白IgG2a之位向性固定法—Fc區域的親和性配體設計★ 量子點表面改質與動物細胞標定
★ 以螢光光譜觀測蛋白質吸附於疏水表面後之構型變化與吸附位向★ 利用雙功能吸附基材進行蛋白復性-蛋白吸附狀態對復性的影響
★ 界面聚合之奈米過濾膜的抗氯性研究★ 以螢光光譜探討Indolicidin及其類似物與微脂粒之交互作用
★ 負電性奈米過濾膜之排鹽特性★ 金奈米粒子親水化及與DNA一對一鍵結之探討
★ 以雙重電性表面改質方式製作抗生物吸附之超過濾與奈米過濾膜★ 以表面修飾之材料控制間葉幹細胞貼附及對其往軟骨分化之影響
★ 金奈米粒子與DNA一對一鍵結及其在檢測單一核苷酸變異的應用★ 鹼性胜肽抗生素indolicidin及其類似物之溶血作用機制探討
★ 蛋白質特定方向固定化-以α-amylase為例★ Indolicidin及其類似物與微脂粒交互作用之熱力學研究
★ 位向性固定化葡萄糖氧化酶之新方法★ Indolicidin 及其類似物與微脂粒交互作用之焓測 量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗選用PVDF作為奈米過濾膜的基材膜,PVDF本身抗化性佳,所以不易在PVDF膜上進行界面聚合反應製備奈米過濾分離層。故本研究利用臭氧活化PVDF膜表面,在其表面進行自由基聚合反應接枝上丙烯胺,丙烯胺分子結構上具有一級胺基,再利用此胺基和diethylenetriamine(DETA)或polyethylenimine(PEI)與Trimesoyl chloride(TMC)及Cyanuric chloride(CC)進行界面聚合反應。
本實驗製膜程序,丙烯胺接枝膜、聚醯胺分離層及三聚氰胺分離層則分別可由傅立葉紅外線光譜儀鑑定其結構,藉由掃瞄式電子顯微鏡可觀測橫截面結構型態,進而估算出膜厚,可得知PEI型薄膜膜厚約為1.25μm,DETA型薄膜膜厚約為1.05μm。另外從MWCO測試,因PEI型薄膜高分子特性,其膜孔較大,從單鹽溶液的過濾表現可發現,DETA型薄膜對於R(MgCl2)的截留率為94.8%,PEI型薄膜對於R(MgCl2)的截留率為83.2%,兩者的鹽類截留率順序則都為R(MgCl2)>R(MgSO4)>R(NaCl)>R(Na2SO4),另外從聚醯胺類薄膜的鹽類截留表現,本實驗以改質疏水性PVDF作為基材膜是可行的。
CC型薄膜所製備出的奈米過濾膜分離層膜孔較緻密,膜厚則與TMC型相差不大,其因為膜孔小,硫酸根易因為靜電吸引力而造成膜表面靜電遮蔽,故鹽類截留率順序為R(MgCl2)>R(NaCl)>R(MgSO4)>R(Na2SO4)。從抗氯及耐鹼測試中可發現,CC型薄膜從其通透量的下降量可發現,其對於氯的耐受性可保持在200ppm 的NaClO溶液中長達96小時,而對於鹼的耐受性則只有24小時。
摘要(英) One of the critical steps in fabricating a nanofiltration membrane is to firmly attach the separating layer on a ultrafiltration membrane. We suggest here a strategy to attach the hydrophilic separating layer on a hydrophobic support. Allylamine was first grafted onto the polyvinyldifluoride support through ozone surface activation and the following free radical polymerization. Primary amines in polyallylamine layer provided hinges to firmly grasp the interfacially polymerized layer. Positively charged nanofiltration membranes were fabricated by interfacial polymerization. Trimesoyl chloride (TMC) and cyanuric chloride (CC) were selected to be the monomer in the organic phase. Polyethylenimine(PEI) and diethylenetriamine (DETA) was adopted to be the monomer in the aqueous phase.
Interfacial polymerization occurs at the interface between organic and aqueous phase to form a thin layer. In this study, Fourier transformed infrared attenuated total reflection spectroscopy (FTIR-ATR) was employed to characterize the nanofiltration layer. Scanning electron microscopy (SEM) was applied to determine the thickness of the nanofltration layer. PEI type membrane, 1.25μm, was thicker than DETA type membrane, 1.05μm. PEI type membrane also has bigger pore size than DETA type membrane from MWCO test. Flux and salt rejection performance were determined by dead-end filtration. The salt rejection order for polyamide type nanofiltration membrane in this study were R(MgCl2)>R(MgSO4)>R(NaCl)>R(Na2SO4) which was dominated by Donnan exclusion. In this study, I have successfully fabricated a nanofiltration layer on allylamine grafted PVDF membrane from the salt rejection performance.
The salt rejection order for CC type membrane was R(MgCl2)>R(NaCl)>R(MgSO4)>R(Na2SO4). CC type membrane also shows good chlorine tolerance for 96hrs chlorine exposure. But it only can tolerate alkaline exposure for 24hrs.
關鍵字(中) ★ 三聚氰氯
★ 奈米過濾膜
關鍵字(英) ★ Cyanuric chloride
★ nanofiltration membrane
論文目次 中文摘要 I
英文摘要 III
總目錄 V
圖目錄 VII
表目錄 VII
第一章 緒論 1
1-1 奈米過濾膜的應用 1
1-2 奈米過濾膜的材料 3
1-3 三聚氰氯(Cyanuric chloride)的特性 4
1-4 研究動機及目的 5
第二章 文獻回顧 7
2-1薄膜發展史 7
2-2 RO與NF膜發展史 9
2-3 高分子薄膜製備方法 12
2-4 奈米過濾膜製備方法 14
2-5 抗氯型奈米過濾膜發展 23
第三章 實驗藥品、儀器設備與流程 26
3-1實驗藥品 26
3-2 儀器設備 28
3-3 實驗方法流程 30
3-4薄膜性質測試 35
3-4-1 紅外線光譜儀鑑定薄膜表面性質 35
3-4-2 掃瞄式電子顯微鏡測定薄膜厚度 35
3-5薄膜過濾實驗 36
3-5-1 中性分子溶液過濾實驗 36
3-5-2 單鹽過濾實驗 37
3-6薄膜抗氯及耐鹼度測試 38
3-6-1薄膜抗氯性測試 38
3-6-2薄膜耐鹼性測試 38
第四章 結果與討論 39
4-1表面接枝法製備超過濾PVDF薄膜 40
4-1-1造孔劑添加量對PVDF薄膜純水通透量的影響 40
4-1-2 臭氧處理時間對PVDF膜表面活化及蝕刻的影響 42
4-1-3 不同聚合時間對膜表面接枝量的影響 45
4-2界面聚合法製備聚醯胺奈米過濾膜 48
4-2-1水相單體濃度對聚醯胺奈米過濾膜的影響 48
4-3 界面聚合法製備三聚氰胺奈米過濾膜 50
4-3-1 不同界面聚合時間對奈米過濾膜層的影響 50
4-4紅外線光譜(FTIR-ATR)分析奈米過濾膜分離層 52
4-4-1紅外線光譜分析聚丙烯胺結構 52
4-4-2 紅外線光譜分析聚醯胺奈米過濾分離層結構 53
4-4-3 紅外線光譜分析三聚氰胺奈米過濾分離層結構 54
4-5 奈米過濾膜孔洞量測 57
4-6 薄膜厚度量測 59
4-7 奈米過濾膜對不同種單鹽溶液的過濾性質 62
4-7-1水相單體分子不同對單鹽溶液過濾表現 62
4-7-2 不同的有機相單體對單鹽過濾表現 65
4-8 薄膜抗氯及耐鹼測試 67
4-8-1 薄膜抗氯測試 67
4-8-2 薄膜耐鹼測試 70
第五章 結論 72
第六章 未來工作與展望 74
第七章 參考文獻 75
參考文獻 Bowen R. W., “Polysulfone-sulfonated poly(ether ether) ketone blend membranes : systematic synthesis and characterization,” Journal of Membrane Science, 250, 1-10, (2005)
Bruening M. L., Hong S. U., Malaisamy R., ”Separation of fluoride from other monovalent anions using multilayer polyelectrolyte nanofiltration membranes,” Langmuir, 23, 1716-1722, (2007)
Bruening M. L., Stanton B. W., Harris J. J., Miller M. D., ”Ultrathin, multilayered polyelectrolyte films as nanofiltration membranes,” Langmuir, 19, 7038-7042, (2003)
Cadotte J. E., Lloyd D. R., “ Evaluation of composite reverse osmosis membrane,” in Material Science of Synthetic Membranes, ACS Symposium Series no. 269, ACS, Washington, (1985)
Childs R. F., Mika A. M., Pandey A. K., Dickson J. M., “ Nanofiltration using pore-filled membranes : effect of polyelectrolyte composition on performance,” Separation and Purification Technology, 22-23, 507-517, (2001)
Childs R. F., Mika A. M., Zhou J., “Pore-filled nanofiltration membranes based on poly(2-acrylamido-2-methylpropanesulfonic acid) gels,” Journal of MembraneSscience, 254, 89-99, (2005)
Childs R. F., Mika A. M., Suryanarayan S., “Gel-filled hollow fiber membranes for water softening,” Journal of Membrane Science, 281, 397-409, (2006)
Chen G., Huang R., Sun M., Gao C., “A novel composite nanofiltration (NF) membrane prepared from graft copolymer of trimethylallylammonium chloride onto chitosan (GCTACC)/poly (acrylonitrile) (PAN) by epichlorohydrin cross-linking,” Carbohydrate Research, 341, 2777-2784, (2006)
Chen G. H., Miao J., Gao C. J., “A novel kind of amphoteric composite nanofiltration membrane prepared from sulfated chitosan (SCS),” Desalination, 181, 173-183, (2005)
Donnan F. G., “Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology,” Journal of Membrane Science, 100, 45-55, (1995)
Jian X. G., Yang F. J., Zhang S. H., Yang D. L., “Preparation and characterization of polypiperazine amide/PPESK hollow fiber composite nanofiltration membrane,” Journal of Membrane Science, 301, 85-92, (2007)
Kawaguchi T., Tamura H., “Chlorine-resistant membrane for reverse 1.Correlation between chemical structure and chlorine resistance of polyamide,” Journal of Applied Polymer Science, 29, 3359-3367, (1984)
Leob S., Sourirajan S., “Sea water demineralization by means of an osmotic membrane,” Advances in chemistry Series Number 38 (1963)
Li L. C., Wang B. G., Tan H. M., Chen T. L., Xu J. P., “A novel nanofiltration membrane prepared with PAMAM and TMC by in situ interfacial polymerization on PEK-C ultrafiltration membrane,” Journal of Membrane Science, 269, 84-93, (2006)
Lowell J. R., Jr., Friesen D. T., McCray S. B., McDermott S. D., Brose D. J., Ray R. J., “Model compounds as predictors of chlorine sensitivity of interfacial polymer reverse osmosis membranes,” Proceedings of the 1987 International Congress on Membranes and Membrane Processes, Tokyo, (1987)
Matsuyama H., Kurata N., Shintani T., “Development of a chlorine-resistant polyamide reverse osmosis membrane,” Desalination, 207, 340-348, (2007)
Matsuyama H., Kurata N., Ohara T., Shintani T., “Development of a chlorine-resisitant polyamide nanofiltration membrane and its field-test results,” Journal of Applied Polymer Science, 106, 4174-4179, (2007)
Muirhead A., Beardley S., Aboundiwan, “Performance of the 12,000m3/day sea water reverse osmosis desalination plant at Jiddah,” Saudi Arabia (Jan.1979-Jan.1981), Desalination 42, 115(1982)
Mulder M., “Basic principles of membrane technology,” Kluwer Academic Publishers, The Netherlands, (1996)
Reddy A. V. R., Buch P. R., Mohan D. J., “Preparation, characterization and chlorine stability of aromatic-cycloaliphatic polyamide thin film composite membranes,” Journal of Membrane Science, 309, 36-44, (2008)
Shah V. J., Rao A. P., Joshi S. V., Trivedi J. J., Devmurari C. V., “Structure-performance correlation of polyamide thin film composite membranes : effect of coating conditions on film formation,” Journal of Membrane Science, 211, 13-24, (2003)
Thurston J. T., Dudley J. R., Kaiser D. W., Hechenbleikner I., Schaefer F. C., Holm-Hansen D., “Cyanuric chloride derivatives. I. Aminochloro-s-triazines,” Journal of the American Chemical Society, 73, 2981-2983, (1951)
Yamaguchi T., “Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell,” Journal of Membrane Science, 214, 283-292, (2003)
Young T. H., Wang D. M., “The effect of the second phase inversion on microstructures in phase inversion EVAL membranes,” Journal of Membrane Science, 146, 169-178, (1998)
Zhao J., Du R., “Properties of poly (N,N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane,” Journal of Membrane Science, 239, 183-188, (2004)
許倚哲, ”負電性奈米過濾膜之排鹽特性,” 國立中央大學化學工程與材料工程研究所碩士論文, (2007)
指導教授 阮若屈(Ruoh-chyu Ruaan) 審核日期 2008-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明