博碩士論文 953204023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:34.204.200.74
姓名 賴耀生(Yao-sheng Lai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 改質鈷硼觸媒於硼氫化鈉水解產氫之研究
(Hydrogen production from hydrolysis of sodium borohydride using modified CoB catalysts)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以硼氫化鈉為還原劑,醋酸鈷為前趨鹽類製備出鈷硼非晶相觸媒,用於硼氫化鈉溶液的水解反應,並以此為基礎加入不同添加劑於鈷硼觸媒中,藉由改變觸媒之物理及化學性質以提高產氫速率,此一系列之改質鈷硼觸媒以X-光繞射儀、氮氣吸附儀、穿透式電子顯微鏡、X-光光電子能譜儀等儀器鑑定其物理及表面性質。
CoB的活性(2230 ml/g‧min)遠大於NiB(140 ml/g‧min),再引入一系列不同鈷含量的NiCoB觸媒比較後,發現元素態鈷在硼氫化鈉水解反應中扮演著活性位置的角色,隨著鈷含量的提高,產氫速率亦隨之增加,加入鎳會降低CoB中的鈷含量,因此對反應有不利的作用。
加入鉬與鎢改質之後,不但元素態鈷的含量提高,表面積也隨之上升,而鉬與鎢均提供部分電子轉移給鈷,其氧化物提供良好的分散作用,降低了觸媒聚集的機率,因此活性激增為CoB的兩倍,MoCoB的活性達5050 ml/g‧min,WCoB的活性達5464 ml/g‧min。
改變促進劑的比例,發現MoCoB最好比例為莫耳比0.05:1:3,而WCoB最好比例為莫耳比1:1:3,CoB對鉬的參雜十分敏感,MoCoB (0.01:1:3)由於參雜的量太少,未達改質之目的,其活性與CoB一樣,繼續提高Mo的比例,反而造成元素態鈷減少,且表面積因太多活性位置被覆蓋而下降;提高鎢的比例,並未顯著增加元素態鈷,但觸媒表面積大幅提升,說明觸媒顆粒隨鎢的參雜而減小,然而過量的鎢,會覆蓋觸媒活性位置,造成活性下降。
以MoCoB或WCoB為核心,可設計出連續式產氫反應器,提供充足燃料給15瓦攜帶式燃料電池。
關鍵字:硼氫化鈉、產氫、非晶相觸媒、鈷、鉬、鎢
摘要(英) Amorphous CoB catalyst was prepared by cobalt acetate using sodium borohydride as the reducing agent in this research. The main reaction was hydrolysis of sodium borohydride solution. Different additives were added into CoB to modify its physical and chemical properties in favor of better hydrogen generation rate. The series of modified CoB catalysts were characterized by X-ray diffraction (XRD), BET (Brunauer-Emmett-Teller), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS).
The catalytic activity of CoB (2230 ml/min•g) was higher than NiB (140 ml/min•g) catalyst. Comparing with a series of NiCoB catalysts, which contained different doping ratio of Co, it was obvious that Co played an important role as an active site in this reaction. With increasing Co content, hydrogen generation rate increased as well. Adding Ni would decrease Co content of CoB causing negative effect.
Modified by Mo and W, not only metallic Co content but also surface area of CoB increased. Both Mo and W transferred partial electron to Co. Oxides of Mo and W provided good dispersion effect, so the probability of aggregation could be reduced. As a result, the activity of MoCoB and WCoB were 5050 ml/min•g and 5464 ml/min•g, respectively, more than double the activity of CoB.
Among different doping ratio of additives, the optimum molar ratio for MoCoB and WCoB was 0.05:1:3 and 1:1:3, respectively. CoB was sensitive for doping of Mo. The activity of MoCoB (0.01:1:3) was closer to the activity of CoB due to its lower Mo content. Increasing Mo content would decrease metallic Co. The decrease in the surface area was observed owing to the cover of active sites by the additive; metallic Co did not significantly increase by adding more W. But the remarkable increase in the surface area observed was due to the smaller particle size of the nanoalloys. However, excess W still covered many active sites, directly caused reduction of activity.
Based on this research, using MoCoB or WCoB as a core catalyst, a continuous hydrogen generator can be designed. This module was sufficient for 15W portable fuel cell.
Key words: Sodium borohydride, hydrogen generation, amorphous catalyst, Co, Mo, W
關鍵字(中) ★ 鉬
★ 鎢
★ 鈷
★ 非晶相觸媒
★ 產氫
★ 硼氫化鈉
關鍵字(英) ★ W
★ Mo
★ Co
★ hydrogen generation
★ amorphous catalyst
★ Sodium borohydride
論文目次 中文摘要 ----------------------------------------------------------------------------------------i
Abstract -----------------------------------------------------------------------------------------ii
誌謝----------------------------------------------------------------------------------------------iv
Table of Contents -----------------------------------------------------------------------------v
List of Figures --------------------------------------------------------------------------------vii
List of Tables ----------------------------------------------------------------------------------xi
Chapter 1 Introduction----------------------------------------------------------------------1
Chapter 2 Literature Review---------------------------------------------------------------7
Chapter 3 Experimental---------------------------------------------------------------------21
Chapter 4
Hydrogen production from catalytic hydrolysis of sodium borohydride solution using NiB, CoB and NiCoB Catalysts-----------------------------------------------------------25
4.1 Introduction -------------------------------------------------------------------------25
4.2 Results and discussion-------------------------------------------------------------26
4.2.1 Catalyst characterization----------------------------------------------------26
4.2.2 Catalytic activity-------------------------------------------------------------28
4.3 Conclusion---------------------------------------------------------------------------30
Chapter 5
Hydrogen production from catalytic hydrolysis of sodium borohydride solution using modified CoB Catalysts----------------------------------------------------------------------38
5.1 Introduction --------------------------------------------------------------------------38
5.2 Results and discussion --------------------------------------------------------------40
5.2.1 Characterization of catalyst -----------------------------------------------40
5.2.2 Catalytic activity ------------------------------------------------------------41
5.2.3 Effect of NaOH--------------------------------------------------------------42
5.2.4 Effect of Temperature-------------------------------------------------------43
5.3 Conclusion ---------------------------------------------------------------------------44
Capter6
Effect of doping amount on promoted MoCoB and WCoB in hydrolysis of sodium borohydride solution-------------------------------------------------------------------------66
6.1 Introduction --------------------------------------------------------------------------66
6.2 Results and discussion --------------------------------------------------------------66
6.2.1 Characterization of catalyst ------------------------------------------------66
6.2.2 Catalytic activity of MoCoB -----------------------------------------------69
6.2.3 Catalytic activity of WCoB ------------------------------------------------69
6.3 Conclusion ---------------------------------------------------------------------------70
Summary ---------------------------------------------------------------------------------------85
References--------------------------------------------------------------------------------------87
Appendix ---------------------------------------------------------------------------------------95
A. Crystalline CoB-----------------------------------------------------------------------------95
B. Nobel catalyst--------------------------------------------------------------------------------98
C. Supported CoB-----------------------------------------------------------------------------102
D. Reactor design-----------------------------------------------------------------------------104
參考文獻 Amendola, S. C., S. L. Sharp-Goldman, M. S. Janjua, M. T. Kelly, P. J. Petillo, M. Binder, “An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst.” J. Power Sources 85 (2000) 186.
Amendola, S. C., S. L. Sharp-Goldman, M. S. Janjua, N. C. Spencer, M. T. Kelly, P. J. Petillo, M. Binder, “A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst” Int. J. Hydrogen Energy 25 (2000) 969.
Bai, Y., C. Wu, F. Wu, B. Yi, “Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution” Mater. Lett. 60 (2006) 2236.
Chen X., H. Li, H. Luo, M. Qiao, “Liquid phase hydrogenation of furfural to furfuryl alcohol over Mo-doped Co-B amorphous alloy catalysts” Appl. Catal. A : Gen. 233 (2002) 13.
Dai, H. B., Y. Liang, P. Wang, H. M. Cheng, “Amorphous cobalt–boron/nickel foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution” J. Power Sources 177 (2008) 17.
Deng, J. F., H. Y. Chen, “A Novel Amorphous Ni-W-P Alloy Powder and Its Hydrogenation Activity” J. Mater. Sci. Lett. 12 (1993) 1508.
Dai, W. L., M. H. Qiao, J. F. Deng, “XPS studies on a novel amorphous Ni-Co-W-B alloy powder” Appl. Sur. Sci. 120 (1997) 119.
Deng, J.F., J. Yang, S. S. Sheng, H. R. Chen, G. X. Xiong, “The Study of Ultrafine Ni-B and Ni-P Amorphous Alloy Powders as Catalysts” J. Catal. 150 (1994) 434.
Davis, W. D., L. S. Mason, G. Stegeman, “The heats of formation of Sodium borohydride, Lithium borohydride and Lithium Aluminium Hydride” J. Am. Chem. Soc. 71 (1949) 2775.
Endres, S., P. Kampe, J. Kunert, A. Drochner, H. Vogel, “The influence of tungsten on structure and activity of Mo–V–W-mixed oxide catalysts for acrolein oxidation” Appl. Catal. A 325 (2007) 237.
Geng, J., D. A. Jefferson, B. F. G. Johnson, “The unusual nanostructure of nickel–boron catalyst” Chem. Commun. (2007) 969.
Gervasio, D., S. Tasic, F. Zenhausern, “Room temperature micro-gydrogen-generator” J. Power Sources 149 (2005) 15.
Gunn, S. R., L. G. Green, “The heat of solution of sodium borohydride and the entropy of borohydride ion” J. Am. Chem. Soc. 77 (1955) 6197.
Hua, D., Y. Hanxi, A. Xinping, C. Chuansin, “Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst” Int. J. Hydrogen Energy 28 (2003) 1095.
Hou, Y., Y. Wang, F. He, S. Han, Z. Mi, W. Wu, E. Min, “Liquid phase hydrogenation of 2-ethylanthraquinone over La-doped Ni–B amorphous alloy catalysts” Mater. Lett. 58 (2004) 1267.
Hou, Y., Y. Wang, F. He, W. Mi, Z. Li, Z. Mi, W. Wu, E. Min, “Effects of lanthanum addition on Ni-B/γ-Al2O3 amorphous alloy catalysts used in anthraquinone hydrogenation” Appl. Catal. A : Gen. 259 (2004) 35.
Hasegawa, Y., M. Haneda, Y. Kintaichi, H. Hamada, “Zn-promoted Rh/SiO2 catalyst for the selective reduction of NO with H2 in the presence of O2 and SO2” Appl. Catal. B : Environ. 60 (2005) 41.
Haschke, H., H. Nowotny, “Untersuchungen in den Dreistoffen (Mo,W)–(Fe,Co,Ni)–B” Monasch. Chem. Bd. 97 (H5) (1966) 1458.
Ingersoll, J. C., N. Mani, J. C. Thenmozhiyal, A. Muthaiah, “Catalytic hydrolysis of sodium borohydride by a novel nickel–cobalt–boride catalyst” J. Power Sources 173 (2007) 450.
Jeitschko W., “The crystal structure of MoCoB and related compounds” Acta. Crystallogr. 930 (1968) B (24).
Jiang, J., U. Dezsi, X. Lin, “A study of the preparation conditions of Fe---B amorphous alloy powders produced by chemical reduction” J. Non-Cryst. Solids 124 (1990) 139.
Ji, T. H., H. J. Shi, J. G. Zhao, Y. Z. Zhao, “Synthesis of Co–B/resin nanoparticles and heat treatment effect on their magnetic properties” J. Magn. Magn. Mater. 212 (2000) 189.
J. Saida, A. Inoue, T. Masumoto, “The Effect of Reaction Condition on Composition and Properties of Ultrafine Amorphous Powders in (Fe, Co, Ni)-B Systems Prepared by Chemical Reduction” Metall. Trans. A 22A (1991) 2125.
Jeong, S. U., R. K. Kim, E. A. Cho, H. J. Kim, S. W. Nam, I. H. Oh, S. A. Hong, S. H. Kim, “A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst” J. Power Sources 144 (2005) 129.
Jeong, S. U., E. A. Cho, S. W. Nam, I. H. Oh, U. H. Jung, S. H. Kim, “Effect of preparation method on Co–B catalytic activity for hydrogen generation from alkali NaBH4 solution” Int. J. Hydrogen Energy 32 (2007) 1749.
Kuz’ma Y. B., P. I. Kripyakevich, M. V. Chepiga, “Crystal structures of the compounds MoCoB, WCoB and WFeB” J. Struct. Chem. 9 (1968) 2.
Krishnan, P., T. H. Yang, W. Y. Lee, C. S. Kim, “PtRu-LiCoO2—an efficient catalyst for hydrogen generation from sodium borohydride solutions” J. Power Sources 143 (2005) 17.
Krishnan, P., K. L. Hsuen, S. D. Yim, “Catalysts for the hydrolysis of aqueous borohydride solutions to produce hydrogen for PEM fuel cells” Appl. Catal., B: Environmental 77 (2007) 206.
Kojima, Y., K. I. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai, H. Hayashi, “Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide” J. Hydrogen Energy 27 (2002) 1029.
Kreevoy, MM Jacobson, RW The rate of decomposition of NaBH4 in basic aqueous solutions. Ventron Alembic. 15, 1979, 2.
Lebugle, A., U. Axelsson, R. Nyholm, N. Martensson, “Experimental L and M core level binding energies for the metals 22Ti to 30Zn” Phys. Scr. 23 (1981) 825.
Linderoth, S., S. Morup, A. Meagher, J. Larsen, M. D. Bentzon, B. S. Clausen, C. J. Koch, S. Wells, S. W. Charles, “Amorphous to crystalline transformation of ultrafine Fe-B particles” J. Magn. Magn. Master. 81 (1989) 138.
Linderoth, S., S. Morup, “Chemically prepared amorphous Fe-B particles: Influence of pH on the composition” J. Appl. Phys 67 (1990) 4472.
Lee, S. P., Y. W. Chen, “Nitrobenzene hydrogenation on Ni–P, Ni–B and Ni–P–B ultrafine materials” J. Mol. Catal., A 152 (2000) 213.
Li, H., X. Chen, M.i Wang, Y. Xu, “Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over an ultrafine Co-B amorphous alloy catalyst” Appl. Catal. A: Gen. 225 (2002) 117.
Liu, Y. C., C. Y. Huang, Y. W. Chen, “hydrogenation of p-chloronitrobenzene on Ni-B nanometal catalysts” J. Nanopart. Res. 8 (2006) 223.
Lee, J. Y., K. Y. Kong, C. R. Jung, E. Cho, S. P. Yoon, J. H. Han, T. G. Lee, S. W. Nam, “A structured Co–B catalyst for hydrogen extraction from NaBH4 solution” Catal. Today 120 (2007) 305.
Linderoth, S., S. Mùrup, “Amorphous TM1-xBx Alloy Particles by Chemical Reduction” J. Appl. Phys. 69(8) (1991) 5256.
Li, H., H. Li, M. Wang, “Glucose hydrogenation over promoted Co–B amorphous alloy catalysts” Appl. Catal., A : Gen. 207 (2001) 129.
Liu, B. H., Z. P. Li, S. Suda, “Nickel- and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride” J. Alloys Compd. 415 (2006) 288.
Lee, J., K.Y. Kong, C.R. Jung, E. Cho, S.P. Yoon, J. Han, T.G. Lee, .W. Nam, A structured Co-B catalyst for hydrogen extraction from NaBH4 solution. Catal. Today 120 (2007) 305.
Moulder, J. F., W. F. Stickle, P. E. Sobol, K. D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy” PA: Physical Electronics, Inc., Minnesota, USA 1995.
McIntyre, N. S., M. G. Cook, “X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper” Anal. Chem. 47 (1975) 2208.
Okamoto, Y., Y. Nitta, T. Imanaka, S. Teeranishi, “Surface Characterization of Nickel Boride and Nickel Phosphide Catalysts by Xray Photoelectron Spectroscopy” J. Chem. Soc., Faraday Trans. I 75 (1979) 2027.
Ozkar, S., M. Zahmakıran, “Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst” J. Alloys Compd. 404-406 (2005) 728.
Patel, N., G. Guella, A. Kale, A. Miotello, B. Patton, C. Zanchetta, L. Mirenghi, P. Rotolo, “Thin films of Co–B prepared by pulsed laser deposition as efficient catalysts in hydrogen producing reactions” Appl. Catal., A: Gen. 323 (2007) 18.
Pinto A. M. F. R., D. S. Falcão, R. A. Silva, C. M, “Rangel Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors” Int. J. Hydrogen Energy 31 (2006) 1341.
Peña-Alonso, R., A. Sicurelli, E. Callone, G. Carturan, R. Raj, “A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells” J. Power Sources 165 (2007) 315.
Richardson, B. S., J. F. Birdwell, F. G. Pin, J. F. Jansen, R. F. Lind, “Sodium borohydride based hybrid power system” J Power Sources 21 (2005) 145.
Richardson B. S., J. F. Birdwell, F. G. Pin, J. F. Jansen, R. F. Lind, “Sodium borohydride based hybrid power system” J Power Sources 145 (2005) 21.
Shen, J., Y. Z. Hu, L. F. Zhang, Y. Z. Li, Y. Chen, “The preparation of Ni-P ultrafine amorphous alloy particles by chemical reduction” Appl. Phys. Lett. 59 (1991) 3545.
Shen, J., Y. Z. Hu, Y. F. Hsia, Y. Chen, “Fe-P-B Ultrafine Amorphous Particles Produced by Chemical Reduction” Appl. Phys. Lett. 59 (1991) 2510.
Saida, J., A. Inoue, T. Masumoto, “Preparation of ultra-fine amorphous powders by the chemical reduction method and the properties of their sintered products” Mater. Sci. Eng. A 133 (1991) 771.
Shen, J. Y. Z. Hu, Q. Zhang, L. F. Zhang, Y. Chen, “Investigation of Ni-P-B ultrafine amorphous alloy particles produced by chemical reduction” J. Appl. Phys. 71 (1992) 5217.
Schreifels, J. A., P. C. Mayburg, W. E. Swartz, “X-ray photoelectron spectroscopy of Nickel Boride Catalysts: Correlation of Surface States with Reaction Products in the Hydrogenation of Acrylonitrile” J. Catal. 65 (1980) 195.
Strizki, M., S. Shan, United States Patent US 6,939,529 B2, Millennium Cell, Inc., Eatontown, NJ (US) (2002).
Schlesinger, H. I., H. C. Brown, A. E. Finholt, J. R. Gilbreath, H. R. Hoekstra, E. K. Hyde, “Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen.” J. Am. Chem. Soc. 75 (1953) 215.
Stockmayer, W. H., D. W. Rice, C. C. Stephenson, “Thermodynamic properties of sodium borohydride andaqueous borohydride ion” J. Am. Chem. Soc. 77 (1955) 1980.
Taiwan Fuel Cell Information, http://www.tfci.org.tw/. 台灣燃料電池資訊網
Tong, D. G., W. Chu, Y. Y. Luo, X. Y. Ji, Y. He, “Effect of crystallinity on the catalytic performance of amorphous Co–B particles prepared from cobalt nitrate and potassium borohydride in the cinnamaldehyde hydrogenation” J. Mol. Catal. A: Chem. 265 (2007) 195.
Tong, D. G., X. Han, W. Chu, H. Chen, X. Y. Ji, “Preparation of mesoporous Co–B catalyst via self-assembled triblock copolymer templates” Mater. Lett. 61 (2007) 4679.
Wonterghem, J. V., S. Moyup, J. W. Christion, S. Charles, W. S. Wells, “Formation of ultra-fine amorphous alloy particles by reduction in aqueous solution” Nature 322 (1986) 622.
The 16th edition of Lange’s Handbook of Chemistry. J. G. Speight, PA: McGraw-Hill, 2004.
Wang,Y. D., X. P. Ai, Y. L. Cao, H. X. Yang, “Exceptional electrochemical activities of amorphous Fe–B and Co–B alloy powders used as high capacity anode materials” Electrochem. Commun. 6 (2004) 780.
Wu, C., F. Wu, Y. Bai, B. Yi, H. Zhang, “Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution” Mater. Lett. 59 (2005) 1748.
Xue, D. S., F. S. Li, R. J. Zhou, “Control of the boron content in amorphous powder prepared by borohydride reduction” J. Mater. Sci. Lett. 9 (1990) 506.
Xia, Z. T., S. H. Chan, “Feasibility study of hydrogen generation from sodium borohydride solution for micro fuel cell applications” J. Power Sources 152 (2005) 46.
Xu, D., H. Zhang, W. Ye, “Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/C catalyst” Catal. Commun. 8 (2007) 1767.
Ye W., H. Zhang, D. Xu, L. Ma, B. Yi, “Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst” J. Power Sources 164 (2007) 544.
Yu, Z. B., M. H. Qiao, H. X. Li, J. F. Deng, “Preparation of amorphous Ni-Co-B alloys and the effect of cobalt on their hydrogenation activity” Appl. Catal. A: Gen. 163 (1997) 1.
Zhang, J. S., W. N. Delgass, T. S. Fisher, J. P. Gore, “Kinetics of Ru-catalyzed sodium borohydride hydrolysis” J. Power Sources 164 (2007) 772.
Zhang, Q., Y. Wu, X. Sun, J. Ortega, “Kinetics of catalytic hydrolysis of stabilized sodium borohydride solutions” Ind. Eng. Chem. Res. 46 (2007) 1120.
指導教授 陳郁文(Yu-wen Chen) 審核日期 2008-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明