博碩士論文 953204045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.204.173.45
姓名 蘇彥成(Yen-cheng Su)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
(Spherical Crystallization for Lean Solid-DoseManufacturing by Initial Solvent Screening: TheStudy of Carbamazepine)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
★ 生命的起源與天門冬氨酸在水中的結晶★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 發新的活性藥物物質(API)是相當費時且耗費成本的。本論文介紹一個高效率的初步溶劑篩選方法,用來減少藥物研發階段所耗費的時間及成本。這個篩選方法可以同時獲得四個工業上所需要的重要藥物性質,包含溶解度、同質異相、晶貌及結晶度。基於豐富的文獻支持和廣大的市場價值,本篇論文選用卡馬西平(Carbamazepine
(C15H12N2O))為模式藥物。
從實驗結果可知,從三氯甲烷,1,4 二氧己環,硝基苯及乙腈四種溶劑中再結晶出 I 型卡馬西平。III 型卡馬西平則產生於其他的好溶劑中。因為 III 型卡馬西平是熱力學中最穩定的型態。此外,在丙酮溶劑中發現了卡馬西平和丙酮的溶劑合物。同質異相表(Form space)歸納了溶劑和卡馬西平的溶解關係,這個結果可以延伸應用到球形結晶技術。利用同質異相表,可以整理出所有可用於球形結晶技術的溶劑組合,總計有 183 種,其中只有 10 組是有效的,成功找出有效溶劑組合的機率是 10/183 = 0.0546。由此可知,除非利用有系統的實驗方法,否則找到有效溶劑組合的機率是微乎其微地。本論文也深入探討了球形結晶的各種性質,包含外觀、長度平均直徑、表觀密度、分佈密度、球形度、易脆性及安息角。所有有效的溶劑組合中,最佳的溶劑組合是乙腈-水-對二甲苯,因為這個組合具有相對高的產率,且產物的流動性較佳。
本論文所介紹之技術不僅可以用於卡馬西平,亦可應用於其他的活性藥物物質或簡單的有機分子。
摘要(英) A development of a new active pharmaceutical ingredient (API) is time-consuming and expensive. In order to reduce the investigation time in the drug development stage, initial solvent screening method with a small amount of API was introduced in this study. Four useful engineering data including solubility, polymorphism, crystal habits and crystallinity were obtained by initial solvent screening technique. Carbamazepine (C15H12N2O) was the model API, because of the abundance of its literature and its market value.
Form I carbamazepine crystals were obtained from chloroform, 1,4-dioxane, nitrobenzene and acetonitrile. The thermodynamically stable Form III carbamazepine crystals were produced from other good solvents. Besides, carbamazepine-acetone 1:1 solvate was also produced in acetone by temperature cooling. Form space summarized the relationship between the solvents and the API, and the relationship was extended to spherical crystallization. Based on the form space, solvent combinations for the preparation of spherical agglomerates of an API was easy to be summarized. There were 183 solvent combinations possible to produce carbamazepine spherical agglomerates but only 10 solvent combinations (Table 4.5) were workable. The probability of possible solvent combination was 10/183 = 0.0546. It was difficult to find out a suitable solvent combination without any symmetric experiments. The particle properties of spherical agglomerates including appearances of spherical agglomerates, length mean diameter, apparent density, population density, sphericity, friability and angle of repose of spherical agglomerates were well studied. The best combination for spherical crystallization was acetonitrile-water-p-xylene because of a high yield of product and a good flowability.
This technique not only could be applied to carbamazepine but also to other APIs or sample organic compounds.
關鍵字(中) ★ 晶貌
★ 溶解度
★ 同質異相
★ 結晶度
★ 初始溶劑篩選
★ 同質異相表
★ 球形結晶
★ 卡馬西平
關鍵字(英) ★ initial solvent screening
★ form space
★ crystallinity
★ polymorph
★ crystal habit
★ solubility
★ spherical crystallization
★ carbamazepine
論文目次 摘要.......................................................i
Abstract...................................................ii
Acknowledgements...........................................iv
Table of Contents..........................................v
List of Tables.............................................viii
List of Figures............................................X
Chapter 1. Executive Summary..........................1
1.1. Introduction.......................................1
1.2. Brief Introduction of Carbamazepine................5
1.3. Conceptual Framework...............................7
Chapter 2. Instrument Analysis.......................14
2.1.Introduction.......................................14
2.2. Thermal Analyses..................................16
2.2.1. Differential Scanning Calorimetry (DSC)...........16
2.2.2. Thermogravimetric Analysis (TGA)..................20
2.3. Spectroscopic Methods.............................22
2.3.1. Powder X-ray Diffractometry (PXRD)................22
2.4. Microscopy........................................24
2.4.1. Optical Microscopy (OM)............................2
2.4.2. Scanning Electron Microscopy (SEM)................26
2.5. Conclusion........................................29
Chapter 3. Solubility, Polymorphism, Crystal Habits
and Crystallinity of Carbamazepine by Initial Solvent
Screening..................................................34
3.1. Introduction......................................34
3.1.1. Solubility........................................36
3.1.2. Polymorph.........................................38
3.1.3. Crystal habits....................................41
3.1.4. Crystallinity.....................................42
3.1.5. Hansen Parameters.................................43
3.1.6. Carbamazepine.....................................43
3.2. Materials.........................................46
3.3. Experimental Procedures...........................52
3.3.1. Solubility Measurement and Crystallization........52
3.3.2. Optical Microscopy (OM)...........................54
3.3.3. Differential Scanning Calorimetry (DSC)...........54
3.3.4. Powder X-ray Diffractometry (PXRD)................55
3.3.5. Thermogeavimetric Analysis (TGA)..................55
3.4. Results and Fiscussion............................56
3.4.1. Solubility........................................56
3.4.2. Polymorphism......................................64
3.4.2.1. Form I of CBZ.............................65
3.4.2.2. Form III of CBZ...........................68
3.4.2.3. Mixture Form of CBZ.......................70
3.4.2.4. 1:1 CBZ-Acetone Solvate...................71
3.4.2.5. Summary...................................73
3.4.3. Crystallinity.....................................74
3.4.4. Crystal Habits Study..............................77
3.5. Conclusions.......................................81
Chapter 4. Spherical crystallization of carbamazepine
by initial solvent screening..............................89
4.1. Introduction......................................89
4.2. Materials.........................................95
4.3. Experimental procedures...........................99
4.3.1. Guide for Finding Out All Solvent Combinations....99
4.3.2. Spherical Crystallization........................101
4.3.3. Digital Camera...................................102
4.3.4. Differential Scanning Calorimetry (DSC)..........102
4.3.5. Powder X-ray Diffractometry (PXRD)...............103
4.3.6. Thermogravimetric Analysis (TGA).................103
4.3.7. Scanning Electron Microscopy (SEM)...............104
4.3.8. Characterizations of the Spherical Agglomerates..104
4.3.8.1. Angle of Repose..........................104
4.3.8.2. Length Mean Diameter.....................105
4.3.8.3. Population Density.......................105
4.3.8.4. Apparent Density.........................105
4.3.8.5. Sphericity...............................106
4.3.8.6. Friability...............................106
4.4. Results and Discussion...........................107
4.4.1. Solvent Combinations.............................107
4.4.2. Characterization of the Spherical Agglomerates...116
4.4.3. Polymorphism and Structure of Spherical
Agglomerates.....................................120
4.5. Conclusions......................................125
Chapter 5. Conclusions and Future Work..............132
參考文獻 C. Han, and B. Wang, “Factors that impact the developability of drug candidates: An overview,” Ch 1 in Drug Delivery: Principles and Applications, (John Wiley & Sons, USA, 2005) pp. 1-5.
W. L. McCabe, J. C. Smith, and P. Harriott, “Crystallization” Ch 27 in Unit Operations of Chemical Engineering, Sixth edition (McGraw-Hill, New York, USA, 2001) pp. 902-942.
O. Almarsson, and M. J. Zaworotko, “Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals present a new path to improved medicines? ” Chem. Commun., (17), 1889-1896 (2004).
T. Lee, C. S. Kuo, and Y. H. Chen “Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening,” J. Pharm. Tech., 30(10), 72-92 (2006).
T. L. Threlfall “Analysis of organic polymorphs a review,” Analyst, October 120(10), 2435-2460 (1995).
D. Giron, “Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates,” Thermochem. Acta, 248, 1-59 (1995).
G. W. Caldwell, D. M. Ritchie, J. A. Masucci, W. Hageman, and Z. Yan, “The new pre-preclinical paradigm: Compound optimization in early and late phase drug discovery,” Curr. Top. Med. Chem., 1(5), 353-366 (2001).
W. H. DeCamp, “The impact of polymorphism on drug development: A regulator’s viewpoint,” Am. Pharm. Rev., 4(3), 70-77 (2001).
J. Alsenz, and M. Kansy, “High throughput solubility measurement in drug discovery and development,” Adv, Deliv. Rew. 59(2) 546-567 (2007).
S. Byrn, K. Morris, and S. Comella, "Reducing time to market with a science-based management strategy," Pharm. Tech.,46–56 (2005).
S. Balbach, and C. Korn, “Pharmaceutical evaluation of early development candidates “The 100 mg-approach”,” Int. J. Pharm., 275(1-2), 1-12(2004).
S. I. F. Badawy, and M. A. Hussain, “Effect of starting material particle size on its agglomeration behavior in high shear wet granulation,” AAPS Pharm. Sci. Tech., 5(3), Article 38, 1-7(2004).
G. G. Liversidge, and K. C. Cundy, “Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. absolute oral bioavailability of nanocrystalline danazol in beagle dogs,” Int. J. Pharm., 125(1), 91-97(1995).
Q. R. Cau, Y. W. Choi, J. H. Cui, and B. J. Lee, “Solvent combination, release characteristics and bioavailability of novel monolithic hydroxypropylmethylcellulose matrix tablets containing acetaminophen,” J. Control. Release, 108(2-3), 351-361(2005).
A. M. Railkar, and J. B. Schwartz, “Use of a moist granulation technique (MGT) to develop comtrolled-release dosage forms of acetaminophen.” Drug Dev. Ind. Pharm., 27(4), 337-343(2001).
A. M. Railkar, and J. B. Schwartz, “Evaluation and comparison of a moist granulation technique to conventional methods,” Drug Dev. Ind. Pharm., 26(8), 885-889(2000).
P. Holm, T. Schæfer, and C. Larsen, “End-point detection in a wet granulation process,” Pharm. Dev. Tech., 6(2), 181-192(2001).
N. A. Lewis, “A tracking tool for lean solid-dose manufacturing,” Pharm. Tech., 30(10), 94-108 (2006).
T. Lee and F. B. Hsu, “A cross-performance relationship between Carr’s index and dissolution rate constant: the study of acetaminophen batches,” Drug Dev. Ind. Pharm., 33(11), 1273-1284 (2007).
中國醫藥報, “世衛組織推薦的抗癲癇藥佔絕對優勢,” 上海市食品藥品監督管理局 (2004).
T. Umeda, N. Ohnishi, T. Yokoyama, K. Kuroda, T. Kuroda, E. Tatsumi, and Y. Matsuda, “Kinetics of the thermal transition of carbamazepine polymorphic forms in the solid state,” Yakugaku Zasshi, 104(7), 786-792 (1984).
F. U. Krahn, and J. B. Mielck, “Relations between several polymorphic forms and the dihydrate of carbamazepine,” Pharm. Acta Helv., 62(9), 247-254 (1987).
M. M. J. Lowes, M. R. Caira, A. P. Lötter, and J. G. Van Der Watt, “Physicochemical properties and X-ray structural studies of the trigonal polymorph of carbamazepine,” J. Pharm. Sci., 76(9), 744-752 (1987).
J. Dugué, R. Céolin, J. C. Rouland, and F. Lepage, “Polymorphism of carbamazepine: solid-state studies on carbamazepine dihydrate,” Pharm. Acta Helv., 66(11), 307-310 (1991).
L. E. McMahon, P. Timmins, A. C. Williams, and P. York, “Characterization of dihydrates prepared from carbamazepine polymorphs,” J. Pharm. Sci., 85(10), 1064-1069 (1996).
Y. Kobayashi, S. Ito, S. Itai, and K. Yamamoto, “Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate,” Int. J. Pharm., 193(2), 137-146 (2000).
C. Rustichelli, G. Gamberini, V. Ferioli, M. C. Gamberini, R. Ficarra, and S. Tommasini, “Solid-state study of polymorphic drugs: carbamazepine,” J. Pharm. Biomed. Analysis, 23(1), 41-54 (2000).
A. Grzesiak, M. Lang, K. Kim, and A. J. Matzger, “Comparison of the four anhydrous polymorphs of carbamazepine and crystal structure of Form I,” J. Pharm. Sci., 92(11), 2260-2271 (2003).
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Ch 5 in Powder Technology Hand Book 2nd (CRC, USA, 1997) pp.720-730.
K. Gotoh, H. Masuda, and K. Higashitani, “Fundamental properties of powder Beds,” Ch 3 in Powder Technology Hand Book 2nd (CRC, USA, 1997) pp.413-423.
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Ch 5 in Powder Technology Hand Book 2nd (CRC, USA, 1997) pp.659-661.
Y. Kawashima, M. Okumura, and H. Takenaka “Spherical crystallization: Direct spherical agglomeration of salicylic acid crystals during crystallization,” Science., 216(4), 1127-1128 (1982).
T. L. Threlfall, “Analysis of organic polymorphs: A review,” The analyst, 120(10), 2435-2460 (1995).
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Ch 5 in Powder Technology Hand Book 2nd (CRC, USA, 1997) pp. 720-730.
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Ch 3 in Powder Technology Hand Book 2nd (CRC, USA, 1997) pp. 413-423.
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Ch 5 in Powder Technology Hand Book 2nd (CRC, USA, 1997) pp. 659-661.
T. Yoshinari, R.T. Forbes, P. York, and Y. Kawashima, “Moisture induced polymorphic transition of mannitol and its morphological transformation,” Int. J. of Pharm., 247(1-2), 69-77 (2002).
P. Di Martino, A-M. Guyot-Hermann, P. Conflant, M. Drache, and J-C. Guyot, “A new pure paracetamol for direct compression: The orthorhombic form,” Int. J. Pharm., 128(1-2), 1-8 (1996).
S. T. Beckett, M. G. Francesconi, P. M. Geary, G. Mackenziea, and A. P. E. Maulny, “DSC study of sucrose melting,” Carbo Res., 341(15), 2591–2599 (2006).
L.Yu, S. M. Reutzel, and G. A. Stephenson, “Physical characterization of polymorphic drugs: an integrated characterization strategy,” PSTT 1(3), 118-127 (1998).
T. Umeda, N. Ohnishi, T. Yokoyama, K. Kuroda, T. Kuroda, E. Tatsumi, and Y. Matsuda, “Kinetics of the thermal transition of carbamazepine polymorphic forms in the solid state,” Yakugaku Zasshi, 104(7), 786-792 (1984).
A. Grzesiak, M. Lang, K. Kim, and A. J. Matzger, “Comparison of the four anhydrous polymorphs of carbamazepine and crystal structure of Form I.” J. Pharm. Sci., 92(11), 2260-2271 (2003).
D. Giron, “Application of thermal analysis and coupled techniques in pharmaceutical industry,” J. Therm. Anal. Calorim. 68(2), 335-357 (2001).
P. J. Haines, and F. W. Wilburn, “Thermal methods of analysis- principles differential,” Ch3 in Thermal Analysis and Differential Scanning Calorimetry, Applications and Problems, 1st ed (Blackie Academic and Professional, New York, USA, 1995) pp.63- 89.
E. V. Boldyerva, V. A. Drebushchak, I. E. Paukov, Y. A. Kovalevskaya, and T. N. Drebushchak, “DSC and adiabatic calorimetry study of the polymorphs of paracetamol,” J. of Therm. Anal. Calor., 77(2), 607-623 (2004).
A. J. Pasztor, “Thermal analysis techniques,” Chapter 50 in Handbook of Instrumental Techniques for Analytical chemistry, (Prentice Hall PTR, New Jersey, USA, 1997) pp.909-917.
P. J. Haines, and F. W. Wilburn, “Differential thermal analysis and differential scanning calorimetry,” Ch 3 in Thermal Methods of Analysis-Principles, Applications and Problems5th ed (Blackie Academic and Professional, New York, USA, 1995) pp.63- 89.
G. W. Smith, “Precipitation kinetics in an air-cooled aluminum alloy: A comparison of scanning and isothermal calorimetry measurement methods,” Thermochim. Acta., 313(1), 27-36 (1998).
http://www.msm.cam.ac.uk/phase-trans/2002/Thermal2.pdf, H. K. D. H. Bhadeshia, “Differential Scanning Calorimetry.”.
K. Urakami, Y. Shono, A. Higashi, K. Umemoto, and M. Godo, “A novel method for estimation of transition temperature for polymorphic pairs in pharmaceuticals using heat of solution and solubility data,” Chem. Pharm. Bull., 50(2), 263-267 (2002).
G.. Eggleston, B. J. Trask-Morrell, and J. R. Vercellotti, “Use of differential scanning calorimetry and thermogravimetric analysis to characterize the thermal degradation of crystalline sucrose and dried sucrose-salt residues,” J. Agric. Food Chem., 44(10), 3319-3325 (1996).
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Amotic X-Ray spectrometry,” Ch12 in principles of instrumental analysis 4th ed (Thomson learning, USA, 1998) pp.272-296.
http://www.cella.cn/jxck/02.ppt, “Methods and Techniques for Cell Biology”.
Z. G. Li, R. L. Harlow, C. M. Foris, H. Li, P. Ma, R. D. Vickery, M. B. Maurin, and B. H. Toby, “New applications of electron diffraction in the pharmaceutical industry: Polymorph determination by using a combination of electron diffraction and synchrotron X-ray powder diffraction techniques,” Microsc. Microanal., 8(2), 134-138 (2002).
P. Mura, M. T. Faucci, A. Manderioli, G. Bramanti, and L. Ceccarelli, “Compatibility study between ibuproxam and pharmaceutical excipients using differential scanning calorimetry, hot-stage microscopy and scanning electron microscopy,” J. Pharm. Biomed. Anal., 18(1-2), 151-163 (1998).
K. Gong, R. Viboonkiat, I. U. Rehman, G. Buckton, and J. A. Darr, “Formation and characterization of porous indomethacin-PVP coprecipitates prepared using solvent-free supercritical fluid processing,” J. Pharm. Sci., 94(12), 2583-2590 (2005).
D. A. Skoog, F. J. Holler, and T. A. Nieman, “Surface characterization by spectroscopy and microscopy”, Ch 21 in Principles of instrumental analysis Fifth edition (Thomson Learning, USA, 2001) pp. 549-553.
R. E. Reed-hill, “Analytical methods”, Ch 2 in Physical Metallurgy Principles Third edition ( PWS Publishing Company, Boston, USA, 1994) pp.53-60.
A. J. Wright, S. E. McGauley, S. S. Narine, W. M. Willis, R. W. Lencki, and A. G. Marangoni, “Solvent effects on the crystallization behavior of milk fat fractions,” J. Agric. Food Chem., 48(4), 1033-1040 (2000).
Y. Akpalu, L. Kielhorn, B. S. Hsiao, R. S. Stein, T. P. Russell, J. V. Egmond, and M. Muthukumar, “Structure development during crystallization of homogeneous copolymers of ethene and 1-octene: Time-resolved synchrotron X-ray and SALS measurements,” Macromol., 32(3), 765-770 (1999).
H. Ahari, R. L. Bedard, C. L. Bowes, N. Coombs, ö. M. Dag, T. Jiang ,G. A. Ozin, S. Petrov , I. Sokolov, A. Verma, G. Vovk, and D. Young, “Effect of microgravity on the crystallization of a self-assembling layered material,” Nature 388(6645), 857 - 860 (1997 ).
S. L. Morissette, ö. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima and C. R. Gardner, “High-throughput crystallization: polymorphs, salts co-crystals and solvates of pharmaceutical solids,” Adv. Drug Del. Rev., 56(3), 275-300 (2004).
R. Hilfiker, F. Blatter, M. V. Raumer, “Relevance of solid-state properties for pharmaceutical products”, Ch 1 in polymorphism in pharmaceutical industry (WILEY-VCH, Weinheim, Germany, 2006) pp.1-19.
R. Hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. D. Paul, B. Freiermuth, A. Geoffroy, U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit, and M. V. Raumer, “Polymorphism-integrated approach from high-throughput screening to crystallization optimization,” J. Therm. Anal. Calorim., 73(2), 429-440 (2003).
S. Khoshkhoo, and J. Anwart, “Crystallization of polymorph: the effect of solvent,” J. Phys. D: Appl.Phys., 26(8), B90-B93 (1993).
T. Lee, and J. Lee., “Particle attrition by particle-surface friction in dyers.” Pharm. Tech. North America., 27(5), 64, 66, 68, 70, 72 (2003).
S. Teychene, J. M. Autert, and B. Bincans, “Determination of solubility profiles of eflucimibe, polymorphism: experimental and modeling,” J. Pharm. Sci., 95(4), 871-882 (2006).
C. Wibowo, W. Chang, and K. M. Ng, “Design of integrated crystallization systems,” AIChE. J. 47(11), 2474-2492 (2001).
Z. Jane, and D. J. W. Grant, “Relationship between physical properties and crystal structures of chiral drugs,” J. Pharm. Sci. 86(10), 1073-1078 (1997).
M. L. Peterson, "Interactive high-throughput polymorphism studies on acetaminophen and an experimentally derived structure for form III," J. Am. Chem. Soc. 124 (37), 10958–10959 (2002).
A.Y. Lee, "Crystallization on confined engineered surfaces: A method to control crystal size and generate different polymorphs," J. Am. Chem. Soc. 127 (43), 14982–14983 (2005).
C. Rustichelli, G. Gamberini, V. Ferioli, M.C. Gamberini, R. Ficarra, and S. Tommasini, “Solid-state study of polymorphic drugs: carbamazepine,” J. Pharm. Biomed. Anal., 23(1), 41-54 (2000).
J. W. Mullin “solution and solubility”, Ch 3 in crystallization third edition. (Butterworth-Heinemann, London, England, 1992) pp86.
S. Teychené, J. M. Autret, and B. Biscans, “Crystallization of eflucimibe drug in a solvent mixture: Effects of process conditions on polymorphism,” Cryst. Growth Des., 4(5), 971-977 (2004).
N. Kubota, “A new interpretation of metastable zone widths measured for unseeded solutions,” J. Cryst. Growth., 310(3), 629-634 (2008).
J. W. Mullin “solution and solubility”, Ch 3 in crystallization third edition. (Butterworth-Heinemann, London, England, 1992) p117.
S. Lohani, and D. J. W Grant, “Thermodynamic of polymorphs.” chapter 2 in polymorphism in pharmaceutical industry. (WILEY-VCH, Weinheim/Germany, 2006) pp.21-42.
L. X. Yu, M. S. Furness, A. Raw, K. P. W. Outlaw, N. E. Nashed, E. Ramos, S. P. F. Miller, R. C. Adams, F. Fang, R. M. Patel, F. O. Holcombe, Jr. Y. Y. Chiu, and A. S. Hussain, “Scientific considerations of pharmaceutical solid polymorphism in abbreviated new drug applications,” Pharm. Res., 20(4), 531-536 (2003).
J. Breu, P. Doz., W. Seidl, D. Huttner, and F. Kraus, “Nucleation-controlled crystallization of a new, spontaneously resolved solvate of [Ru(bpy)3](PF6)2 and its desolvation reaction,” Chem. Eur. J., 19(8), 4454-4460 (2002).
T. Lee, C. S. Kuo, and Y. H. Chen “Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by initial solvent screening,” J. Pharm. Tech., 30(10), 72-92 (2006).
T. L. Threlfall, “Analysis of organic polymorphs a review,” Analyst, 120(10), 2435-2460 (1995).
D. Giron, “Thermal analysis and calorimetric methods in the characterization of polymorphs and solvates,” Thermochem. Acta., 248(2) 1-59 (1995).
R. J. Behme, and D. Brooke, “Heat of fusion measurement of a low melting polymorph of carbamazepine that undergoes multiple-phase changes during differential scanning calorimetry analysis,” J. pharm. Sci., 80(10), 986-990 (1991).
T. Lee, and S. T. Hung, “Cocktail-solvent screening to enhance solubility, increase crystal yield, and induce polymorphs,” Pharm. Tech., 32(1), 76-95 (2008).
C. Stoica, P. Verwer. H. Meekes, P. J. C. M. van Hoof, F.M. Kaspersen, and E. Vlieg, “Understanding the effect of a solvent on the crystal habit,” Cryst. Growth Des., 4(4), 765-768 (2004).
A. K. Tiwary, “Modification of crystal habit and its role in dosage form performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001).
A. van Langevelde, “Detection and analysis solid Form patenting crystallization process development,” http://www.iqpc.de/de-2240,
S. Mirza, I. Miroshnyk, J. Heinämäki, L. Christiansen, M. Karjalainen, and J. Yliruusi, “The variety of crystalline forms of erythromycin,” AAPS Pharm. Sci., 5(2), 1-9 (2004).
D. Gao, and J. H. Raytting, “Use of solution calorimetry to determine the extent of crystallinity of drugs and excipients,” Int. J. Pharm. 151(2), 183-192 (1997).
Y. Kong, and J. N. Hay, “The enthalpy of fusion and degree of crystallinity of polymers as measured by DSC,” Eur. Polym. J., 39(8), 1721-1727 (2003).
A. F. M. Barton, Handbook of Solubility Parameters and Other Cohesion Parameter 2nd ed., (CRC Press, USA, 1991) pp.69-149.
K. C. Gordon, S. L. Howell, T. Rades, and C. J. Strachan, “A theoretical and spectroscopy study of Carbamazepine polymorphs,” J. Raman Spectrosc. 35(17), 401-408 (2004).
L. E. McHanon, P. Timmins, A. C. Williams, and Peter York, “Characterization of dihydrates prepared from carbamazepine polymorphs,” J. Pharm. Sci., 85(10), 1064-1069 (1996).
M. Ono, Y. Tozuka, T. Oguchi, S. Yamamura, and K. Yamamoto, “Effects of dehydration temperature on water vapor adsorption and dissolution behavior of carbamazepine,” Int. J. Pharm., 239(1), 1-12 (2002).
M. Lang, J. W. Kampf, and A. J. Matzger, “Form IV of carbamazepine.” J. Pharm. Sci., 91(4), 1186-1190 (2002).
F. Tian, N. Sandler, J. Aaltonen, C. Lang, D. J. Saville, K. C. Gordon, C. J. Strachan, J. Rantanen, and T. Rades, “ Influence of polymorphic form, morphology, and excipient interactions on the dissolution of carbamazepine compacts,” J. Pharm. Sci., 96(2), 584-594 (2007).
A. Grzesiak, M. Lang, K. Kim, and A. J. Matzger, “Comparison of the four anhydrous polymorphs of carbamazepine and crystal structure of Form I,” J. Pharm. Sci., 92(11), 2260-2271 (2003).
T. Umeda, N. Ohnishi, T. Yokoyama, K. Kuroda, T. Kuroda, E. Tatsumi, and Y. Matsuda, “Kinetics of the thermal transition of Carbamazepine polymorphic forms in the solid state,” Yakugaku Zasshi, 104(7), 786-792 (1984).
K. Kipouros, K. Kachrimanis, I. Nikolakakis, anf S. Malamataris, “Quantitative analysis of less soluble Form IV in commercial carbamazepine (Form III) by diffuse reflectance fourier transForm spectroscopy (DRIFTS) and lazy learning algorithm,” Anal. Chim. Acta., 550(1-2), 191-198 (2005).
N.G. Anderson, Practical Process Research & Development (Academic Press, New York, NY, 2000), pp. 81–111.
J. W. Mullin “Solution and solubility”, Ch 3 in Crystallization third edition. (Butterworth-Heinemann, London, England, 1992) p. 93.
J. dugué, R. Céolin, J. C. Rouland, and F. Lepage, “Polymorphism of Carbamazepine: solid-state studies on Carbamazepine dihydrate,” Pharm. Acta. Helv., 66(11), 207-311 (1991).
M. M. J. Lowes, M. R. Caira, A. P. Lötter, and J. G. Van Der Watt, “Physicochemical properties and X-ray structural studies of the trigonal polymorph of carbamazepine,” J. Pharm. Sci., 76(9), 744-752 (1987).
C. McGregor, M. H. Saunders, G. Buckton, and R. D. Saklatvala, “The use of high-speed differential scanning calorimetry (Hyper-DSCTM) to study the thermal properties of Carbamazepine polymorphs,” Thermochim. Acta., 417(2), 231-237 (2004).
A. Cvetkovskii, R. Bettini1, Lj. Tasic, M. Stupar, I. Casini, A. Rossi, and F. Giordano1, “Thermal properties of binary s of b-cyclodextrin with carbamazepine polymorphs,” J. Therm. Anal. Calorim., 68(2), 669-678 (2002).
D. J. Burnett, F. Thielmann, and T. D. Sokoloski, “Investigating carbamazepine-acetone solvate formation via dynamic gravimetric vapor sorption,” J. Therm. Anal. Calorim., 89(3), 693-689 (2007).
S. G. Fleischman, S. S. Kuduva, J. A. McMahon, B. Moulton, R. D. Bailey Walsh, N. Rodríguez-Hornedo, and M. J. Zaworotko, “Crystal engineering of the composition of pharmaceutical phases: Multiple-component crystalline solids involving carbamazepine,” Cryst. Growth Des., 3(6), 909-919 (2003).
A. Getsoian, R. M. Lodaya, and A. C. Blackburn, “One-solvent polymorph screen of carbamazepine,” Int. J. Pharm., 348(1-2), 3-9 (2008).
Z. B. Yellin, J. V. Mil, L. Addadi, M. Idelson, M. Lahav, and L. Leiserowitz, “Crystal morphology engineering by ”Tailor-Made” inhibitors: A new probe to fine intermolecular interactions,” J. Am. Chem. Soc. 107(11), 3111-3122 (1985).
J. Katta, and Å. C. Rasmuson, “Spherical crystallization of benzoic acid,” Int. J. Pharm., 348(1-2), 61-19 (2008).
T. Lee, and F. B. Hsu, “A cross-performance relationship between Carr’s index and dissolution rate constant: the study of acetaminophen batches,” Drug Dev. Ind. Pharm., 33(11), 1273-1284 (2007).
D. Winn, and M. F. Doherty, “Modeling crystal shapes of organic materials grown form solution,” AIChE ., 46(7) P1248-P1367 (2000).
S. Kim, B. Lotz, M. Lindrud, K. Girard, T. Moore, K. Nagarajan, M. Alvarez, T. Lee, F. Nikfar, M. Davidovich, S. Srivastava, and S. Kiang, “Control of the particle properties of a drug substance by crystallization engineering and the effect on drug product formulation,” Org. Process Res. Dev., 9(6) 894-901 (2005).
K. Morishima, and Y. Kawashima “Micromeritic characteristics and agglomeration mechanisms in the spherical crystallization of bucillamine by the spherical agglomeration and the emulsion solvent diffusion methods,” Powder Technol., 76(1) 57-64 (1993).
A. K. Tiwary, “Modification of Crystal Habit and Its Role in Dosage Form Performance,” Drug Dev. Ind. Pharm., 27(7) 699-709 (2001).
N. A. Lewis, “A tracking tool for lean solid-dose manufacturing,” Pharm. Tech., 30(10), 94-108 (2006).
A. Sano, T. Niwa, T. Kuriki, Y. Kawashima, and H. Takeuchi, “Particle design of tolbutamide by the spherical cystallization technique. II. : factors causing polymorphism of tolbutamide spherical agglomerates,” Chem. Pharm. Bull., 37(8), 2183-2187 (1989).
Y. Kawashima, M. Okumura, and H. Takenaka “Spherical crystallization: direct spherical agglomeration of salicylic acid crystals during crystallization,” Science., 216(4), 1127-1128 (1982).
Y. Kawashima, T. Niwa, H. Takeuchi, T. Hino, Y. Itoh, and S. Furuyama “characterization of polymorphs of tranilast anhydrate and tranilast monohydrate When crystallized by two solvent change spherical crystallization techniques,” J. Pharm. Sci., 80(5), 472-8, (1991).
H. L. Chow, and W. M. Leung, “A study of mechanisms of wet spherical agglomeration of pharmaceutical powders,” Drug Dev. Ind. Pharm., 22(4), 257-371 (1996).
U. Teipel, T. Heintz, and H. H. Krause, “Crystallization of spherical ammonium dinitramide (ADN) particles,” Propellants, Explosives, Pyrotechnics, 25(1), 81-85 (2000).
K. Ujiiye-Ishii, E. Kwon, H. Kasai, H. Nakanishi, and H. Oikawa, “Methodological features of the emulsion and reprecipitation methods for organic nanocrystal fabrication,” Crystal Growth & Design, 8(2), 369-371 (2008).
A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, “Monodisperse double emulsions generated from a microcapillary device,” Science, 308(5721), 537-541 (2005).
T. Lee, and S. T. Hung, “Cocktail-solvent screening to enhance solubility, increase crystal yield, and induce polymorphs,” Pharm. Tech., 32(1), 76-95 (2008).
T. Lee, C. S. Kuo, and Y. H. Chen “Solubility, polymorphism, crystallinity, and crystal habit of acetaminophen and ibuprofen by Initial Solvent Screening,” Pharm. Technol., 30(10), 72-92 (2006).
T. Lee, and M. S. Lin, “Sublimation point depression of tris (8-hydroxyquinoline) aluminum (III) (Alq3) by crystal engineering,” Cryst. Growth Des., 7(9), 1803-1810 (2007).
A. Nokhodchi, M. Maghsoodi, D. Hassan-Zaden, and M. Barzqgar-Jalali “Preparation of agglomerated crystals for improving flowability and compactibility of poorly flowable and compactible drugs and excipients,” Powder Technol., 175(2), 73-81 (2007).
A. Nokhodchi, N. Bolourtchian, and R. Dinarvand “Dissolution and mechanical behaviors of recrystallized carbamazepine from alcohol solution in the presence of additives,” J. Cryst. Growth., 274(3-4), 537-584 (2005).
Y. Kawashima, M. Okumura, and H. Takenaka “The effects of temperature on spherical crystallization of salicylic acid,” Powder Technol., 39(1), 41-47 (1984).
A. Sano, T. Niwa, T. Kuriki, Y. Kawashima, and H. Takeuchi, “Particle design of tolbutamide by the spherical crystallization technique. III. Micromeritic properties and dissolution rate of tolbutamide spherical agglomerates prepared by the quasi-emulsion solvent diffusion method and the solvent change method,” Chem. Pharm. Bull., 38(3), 733-739 (1990).
K. Morishima, Y. Kawashima, Y. Kawashima, H. Takeuchi, T. Niwa, and T. Hino, “Micromeritic characteristics and agglomeration mechanisms in the spherical crystallization of bucillamine by the spherical agglomeration and the emulsion solvent diffusion nethods,” Powder Technology, 76(1), 57-64 (1993).
M. Jbilou, A. Ettabia, A. M. Guyot-Hermann, and J. C. Guyot, “Ibuprofen agglomerates preparation by phase separation,” Drug Dev. Ind. Pharm., 25(3), 297-305 (1999).
P. D. Martino, C. B. le′my, F. Piva, E. Joiris, G. F. Palmieri, and S. Martelli, “Improved dissolution behavior of fenbufen by Spherical Crystallization,” Drug Dev. Ind. Pharm., 25(10), 1073–1081 (1999).
M. Nocent, L. Bertocchi, F. Espitalier, M. Baron, and G. Couarraze, “Definition of a solvent system for spherical crystallization of salbutamol sulfate by quasi-emulsion solvent diffusion (QESD) method,” J. Pharm. Sci., 90(10), 1620-1627, (2001).
D. Amaro-Gonzalez, and B. Biscans, “Spherical agglomeration during crystallization of an active pharmaceutical ingredient,” Powder Technol., 128(2), 188-194 (2002).
A. R. Paradkar, A. P. Pawar, J. K. Chordiya, V. B. Patil, and A. R. Ketkar, “Spherical crystallization of celecoxib,” Drug Dev. Ind. Pharm., 28(10), 1213-1220 (2002).
Y. Kawashima, M. Imai, H. Takeuchi, H. Yamamoto, K. Kamiya, and T. Hino, “Improved flowability and compactibility of spherically agglomerated crystals of ascorbic acid for direct tableting designed by spherical crystallization process,” Powder Technology , 130(1), 283– 289 (2003).
J. Burke, “solubility Parameters: Theory and Application,” AIC book and paper group annual, 3, 13-58(1984).
Y. Kawashima, and C. E. Capes, “An experimental study of the kinetics of spherical agglomeration in a stirred vessel,” Powder Technology, 10(1), 85-92 (1974).
A. P. Pawar, A. R. Paradkar, S. S. Kadam, and K. R. Mahadik, “Crystallo-co-agglomeration: A novel technique to obtain ibuprofen-paracetamol agglomerates,” AAPS PharmSciTech, 5(3), 57- 64 (2004).
A. Y. Huang, and J. C. Berg, “gelation of liquid bridges in spherical agglomeration,” Colloids Surf., A 215(12), 241-252 (2003).
K. Gotoh, H. Masuda, and K. Higashitani, “Powder-handling operation,” Ch 5 in Powder Technology Hand book 2nd (CRC, USA, 1997) pp.720-730.
K. Gotoh, H. Masuda, and K. Higashitani, “Fundamental properties of powder Beds,” Ch 3 in Powder Technology Hand book 2nd (CRC, USA, 1997) pp.413-423.
K. Gotoh, H. Masuda, and K. Higashitani, “Fundamental properties of powder Beds,” Ch 3 in Powder Technology Hand Book 2nd (CRC, USA, 1997) pp.659-661.
D.Murphy, F. Rodrı′guez-Cintro′n, B. Langevin, R. C. Kelly, and N. Rodrı′guez-Hornedo “Solution-mediated phase transformation of anhydrous to dihydrate carbamazepine and the effect of lattice disorder,” Ind. Pharm., 246(1-2), 121-134 (2002).
T. Umeda, N. Ohnishi, T. Yokoyama, K. Kuroda, T. Kuroda, E. Tatsumi, and Y. Matsuda, “Kinetics of the thermal transition of carbamazepine polymorphic forms in the solid state,” Yakugaku Zasshi, 104(7), 786-792 (1984).
F. U. Krahn, and J. B. Mielck, “Relations between Several Polymorphic Forms and the Dihydrate of Carbamazepine,” Pharm. Acta Helv., 62(9), 247-254 (1987).
M. M. J. Lowes, M. R. Caira, A. P. Lötter and J. G. Van Der Watt, “Physicochemical properties and X-ray structural studies of the trigonal polymorph of carbamazepine,” J. Pharm. Sci., 76(9), 744-752 (1987).
J. Dugué, R. Céolin, J. C. Rouland, and F. Lepage, “ Polymorphism of carbamazepine: Solid-State studies on carbamazepine dihydrate,” Pharm. Acta Helv., 66(11), 307-310 (1991).
L. E. McMahon, P. Timmins, A. C. Williams, and P. York, “Characterization of Dihydrates Prepared from Carbamazepine Polymorphs,” J. Pharm. Sci., 85(10), 1064-1069 (1996).
Y. Kobayashi, S. Ito, S. Itai, and K. Yamamoto, “Physicochemical properties and bioavailability of carbamazepine polymorphs and dihydrate,” Int. J. Pharm., 193(2), 137-146 (2000).
C. Rustichelli, G. Gamberini, V. Ferioli, M. C. Gamberini, R. Ficarra and S. Tommasini, “Solid-state study of polymorphic drugs: Carbamazepine,” J. Pharm. Biomed. Analysis, 23(1), 41-54 (2000).
A. Grzesiak, M. Lang, K. Kim, and A. J. Matzger, “Comparison of the four anhydrous polymorphs of Carbamazepine and crystal structure of form I,” J. Pharm. Sci., 92(11): 2260-2271 (2003).
指導教授 李度(Tu Lee) 審核日期 2008-7-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明