博碩士論文 953204050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.238.199.4
姓名 陳穎信(Yin-Hsin Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬
(Simulation of pressure swing adsorption process in small-scale oxygen concentrator and production of absolute alcohol from bioethanol)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬
★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析
★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究
★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗
★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗
★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬
★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估★ 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文區分為兩大部份,第一部分研究醫療用個人氧氣製造機以分離空氣製造富氧氣的系統為模擬對象,針對協力廠商所設計的二升製氧機程序與提供的進料條件進行改善與發展。藉由本論文的研究成果預測最佳化的操作條件,及能達到的氧氣純度。由協力廠商提供設計雙塔六步驟程序,採用 OXYSIV-5XPTM 吸附劑,處理進料氣體為 78.3% 氮氣、20.762% 氧氣、0.938% 氬氣。在變動閥值調整為最佳化後,可達到之氧氣濃度為 92mol%,產量為 1.83L/min (STP) 平均產氣流率。
第二部分為研究酒精脫水之變壓力吸附程序,將低於共沸組成濃度 (95wt%) 的乙醇和水混合物利用變壓吸附法提高至無水酒精純度 98.7mol% (99.5wt%)。酒精脫水程序設計為比較 Skarstrom Vacuum 雙塔四步驟程序,加入低壓沖洗步驟成為雙塔六步驟程序,及再加上產氣加壓步驟為雙塔八步驟程序。四步驟程序無法達到無水酒精標準,六步驟程序因為適時犧牲一些回收率將有助於提高純度,但是也未能達標準。八步驟程序的乙醇濃度可達98.7mol%,乙醇回收率相對於六步驟程序也略為提升。接下來討論雙塔八步驟程序為絕熱系統與非恆溫系統的比較,發現兩者差異不大。所以本論文將採取雙塔八步驟程序、絕熱系統。最後本研究將探討各操作變數 (如:進料壓力、吸附塔塔長、抽真空壓力、高壓產氣時間、低壓沖洗時間) 對程序的影響。
摘要(英) This thesis studied two pressure swing adsorption (PSA) system including medical oxygen generation from air and production of anhydrous alcohol from bio-ethanol. Part I of the study was a two-bed six-step process of 2L oxygen concentrator with feed conditions provided by Merits Company to simulate oxygen product purity and average product flow rate. Simulation was performed for the bulk separation of N2/O2/Ar (78.3/20.762/0.938 vol. %) and the process utilized OXYSIV-5XPTM as adsorbent. The results showed that oxygen concentration achieved 92% or average product flow rate achieved 1.83L/min (STP) after varying valve value.
Part II of the study was simulation of pressure swing adsorption in anhydrous alcohol (99.5wt%) production process from a flow of ethanol feed vapor (92wt%). This work developed three kinds of PSA process, i.e. the two-bed four-step process (Skarstrom Vacuum), the two-bed six-step process (including purge step), and the two-bed eight-step process (including backfill step). The simulation showed that two-bed eight-step process achieved 99.5wt% ethanol and a 96.2% recovery. Therefore, the study discussed with performance difference of two-bed eight-step PSA process between general non-isotherm system and adiabatic system. Finally, the optimal operating condition was obtained by varying the operating variables, such as feed pressure, adsorber length, vacuum pressure and step time.
關鍵字(中) ★ 變壓吸附程序
★ 氧氣濃縮機
★ 酒精脫水
關鍵字(英) ★ pressure swing adsorption process
★ oxygen concentrator
★ separation of ethanol-water azeotrope
論文目次 目錄
摘要.................................................................................................................... i
Abstract.............................................................................................................iii
致謝................................................................................................................... v
目錄..................................................................................................................vi
圖目錄............................................................................................................... x
表目錄............................................................................................................xiii
第一章、緒論.................................................................................................... 1
第二章、簡介及文獻回顧................................................................................ 5
2-1 變壓吸附之簡介................................................................................... 5
2-1-1 變壓吸附基本原理..................................................................... 5
2-1-2 吸附劑及其選擇性..................................................................... 6
2-1-3 變壓吸附基本操作步驟............................................................. 8
2-2 文獻回顧............................................................................................. 10
2-2-1 PSA 程序之發展及改進.......................................................... 10
2-2-2 理論之回顧............................................................................... 12
2-3 研究背景與目的................................................................................. 15
2-3-1 小型化醫療用製氧機之研究背景與目的................................ 15
2-3-2 酒精脫水產生無水酒精之研究背景與目的............................ 17
第三章、理論.................................................................................................. 23
3-1 基本假設............................................................................................. 23
3-2 統制方程式......................................................................................... 24
3-3 局部平衡模式-氧氣製程.................................................................... 28
3-4 線性驅動模式-酒精脫水製程............................................................ 34
3-5 參數推導............................................................................................. 36
3-5-1 線性驅動質傳係數質傳係數................................................... 36
3-5-2 軸向分散係數........................................................................... 40
3-5-3 熱傳係數................................................................................... 41
3-6 邊界條件與流速................................................................................. 43
3-6-1 邊界條件與節點流速............................................................... 43
3-6-2 閥公式...................................................................................... 44
3-7 求解步驟............................................................................................. 45
第四章、製氧程序描述.................................................................................. 48
4-1 協力廠商二升機雙塔六步驟程序...................................................... 49
4-2 協力廠商製氧機參數與操作條件...................................................... 51
第五章、製氧程序之數據分析與結果討論................................................... 55
5-1 二升機雙塔六步驟程序之模擬.......................................................... 57
第六章、酒精脫水製程描述.......................................................................... 65
6-1 生質酒精脫水產生無水酒精製程...................................................... 66
6-1-1 Marina Simo et al. (2008) 文獻之雙塔八步驟程序................. 66
6-1-2 酒精脫水雙塔四步驟變壓吸附程序........................................ 69
6-1-3 酒精脫水雙塔六步驟變壓吸附程序........................................ 71
6-1-4 酒精脫水雙塔八步驟變壓吸附程序........................................ 73
6-2 酒精脫水參數與操作條件................................................................. 75
第七章、酒精脫水之數據分析與結果討論................................................... 80
7-1 文獻之雙塔八步驟變壓吸附與程式模擬.......................................... 81
7-2 三種不同程序性能的比較................................................................. 84
7-3 雙塔八步驟程序之模擬..................................................................... 88
7-3-1 絕熱系統與非恆溫系統對製程的影響.................................... 88
7-3-2 進料壓力對程序的影響........................................................... 96
7-3-3 吸附塔塔長對程序的影響..................................................... 101
7-3-4 抽真空壓力對程序的影響..................................................... 106
7-3-5 高壓產氣時間對程序的影響................................................. 114
7-3-6 低壓沖洗時間對程序的影響................................................. 120
第八章、結論................................................................................................ 126
符號說明....................................................................................................... 128
參考文獻....................................................................................................... 132
附錄A、流速之估算方法............................................................................ 137
參考文獻 Al-Asheh S., F. Banat and N. Al-Lagtah, “Separation of Etanol-Water Mixtures Using Molecular Sieves and Biobased Adsorbents”, Chem. Eng. Res. Des., 82(A7), 855-864, 2004.
Anderson L.E., M. Gulati, P.J. Westgate, E.P. Kvam, K. Bowman and M.R. Ladisch, “Synthesis and Optimization of a New Starch-Based Adsorbent for Dehumidification of Air in a Pressure-Swing Dryer”, Ind. Eng. Chem. Res., 35(4), 1180-1187, 1996.
Berlin N.H., ”Method for Providing an Oxygen-Enriched Environment”, U.S. Patent 3,280,536, assigned to Esso Research and Engineering Company, 1966.
Berry K.E. and M. R. Ladisch, “Adsorption of Water from Liquid-Phase Ethanol-Water Mixtures at Room Temperature Using Starch-Based Adsorbents”, Ind. Eng. Chem. Res., 40(9), 2112-2115, 2001.
Bird R.B., W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, 2nd Ed., Wiley, New York, 2007.
Carno M.J. and J.C. Gubulin, “Ethanol-Water Separation in the PSA Process”, Adsorpt., 8(3), 235-248, 2002.
Carton A., A.I. Torre, G. Gonzalez, J.L. Cabezas, ” Separation of Ethanol-Water Mixtures Using 3A Molecular Sieve”, Chem. Technol. Biotechnol., 39(2), 125-132, 1987.
Chou C.T. and W.C. Huang, “Incorporation of a Valve Equation into the Simulation of a Pressure Swing Adsorption Process”, Chem. Eng. Sci., 49(1), 75-84, 1994.
Chou C.T. and W.C. Huang, “Simulation of a Four-Bed Pressure Swing Adsorption Process for Oxygen Enrichment”, Ind. Eng. Chem. Res., 33(5), 1250-1258, 1994.
Chou C.T., C.L. Wu and A.S.T. Chiang, “A Complementary Pressure Swing Adsorption Process Configuration for Air Separation”, Sep. Tech., 4(2), 93-103, 1994.
Doong S.J., and R.T. Yang, “Hydrogen Purification by The Multi-Bed Pressure Swing Adsorption Process”, React. Polym., 6(1), 7-13, 1985.
Doong S.J., and R.T. Yang, "Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models", AIChE J., 32(3), 397-410, 1986.
Doong S.J., and R.T. Yang, "Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption", AIChE J., 33(6), 1045-1049, 1987.
Farhadpour F.A. and A. Bono, “Sorption Separation of Ethanol-Water Mixture With a Bi-dispersed Hydrophobic Molecular Sieve, Sillicalite: Determination of the Controlling Mass Transfer Mechanism”, Chem. Eng. Process, 35(2), 141-155, 1996.
Farooq S. and D.M. Ruthven, “A Comparison of Linear Driving Force and Pore Diffusion-Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem.Eng. Sci., 45(1), 107-115, 1990.
Fuller E.N., P.D. Schettler, and J.C. Giddings, “A Comparison of Methods for Predicting Gaseous Diffusion Coefficients”, J. Gas Chromatogr., 3, 222-227, 1965.
Fuller E.N., P.D. Schettler, and J.C. Giddings, ”A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients”, Ind. Eng. Chem., 58(5), 18-27, 1966.
Garg D.R. and J.P. Ausikaitis, “Molecular Sieve Dehydration Cycle for High Water Content Stream”, Chem. Eng. Prog., 79(4), 60-65, 1983.
Gorbach A., M. Stegmaier and G. Eigenberger, “Measurement and modeling of water vapor adsorption on Zeolite 4A-equilibria and kinetics”, Adsorption, 10 (1), 29–46, 2004.
Guan J. and X. Hu, “Simulation and analysis of pressure swing adsorption: ethanol drying process by the electrical analogue”, Sep. Purif. Techol., 31(1), 31-35, 2003.
Guerin de Montgareuil P. and D. Domine, “Process for separation a binary gaseous mixture by adsorption”, U.S. Patent 3,155,468, assigned to Société L’Air Liquide, Paris, 1964.
Hassan M.M., D.M. Ruthven, and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on a Carbon Molecular Sieve”, Chem. Eng. Sci., 41(5), 1333-1343, 1986.
Hassan M.M., N.S. Raghvan, and D.M. Ruthven, “Pressure Swing Air Separation on a Carbon Molecular Sieve. II: Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem.Eng. Sci., 42(8), 2037-2043, 1987.
Heinze G., Belgain Patent 613,267, assigned to Farbenfabriken Bayer A. G., 1962.
Huang W.C. and C.T. Chou, “A Moving Finite Element Simulation of a Pressure Swing Adsorption Process”, Comput. Chem. Eng., 21(3), 301-315, 1996.
Jee J.G., M.B. Kim, and C.H. Lee, “Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed: Binary, Ternary, and Five-Component Mixturess”, Ind. Eng. Chem. Res., 40(3), 868-878, 2001.
Jones R.L., G.E. Keller II and R.C. Wells, ”Rapid Pressure Swing Adsorption Process with High Enrichment Factor”, U.S. Patent 4, 194, 892, assigend to Union Carbide Corporation, 1980.
Kowler D.E., and R.H. Kadlec, “The Optimal Control Of a Periodic Adsorber: Part I. Experiment”, AIChE J., 31(6), 1207-1212, 1972.
Ladisch M.R., M. Voloch, J. Hong, P. Bienkowski and G.T. Tsao, “Cornmeal Adsorber for Dehydration Ethanol vapors”, Ind. Eng. Chem. Process Des. Dev., 23(3), 437-443, 1984.
Lee C.H., J. Yang, and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA for Coke Oven Gas”, AIChE J., 45(3), 535-545, 1999.
Marian Simo, Christopher J. Brownand and Vladimir Hlavacek, “Simulation of pressure swing adsorption in fuel ethanol production process”, Comput. Chem. Eng., 32(7), 1635-1649, 2008.
Marsh W.D., F.S. Pramuk, R.C. Hoke, and C.W. Skarstrom, “Pressure Equalization Depressuring in Heatless Adsorption”,U.S. Patent 3,142,547, assigned to Esso Research and Engineering Company, 1964.
McCabe W.L., J.C. Smith, and P. Harriott, Unit Operations of Chemical Engineering, Sixth Edition, McGraw-Hill, Inc., New York, 2001.
Nakao S., and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Jpn., 16(2), 114-119, 1983.
Park J.H., J.N. Kim, and S.H. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AIChE J., 46(4), 790-802, 2000.
Rao D.R. and S. Sircar, “Liquid-phase Adsorption of Bulk Ethanol-Water Mixtures by Alumina”, Adsorpt., Sci. Technol., 10, 93-104, 1993.
Perry R.H., D.W. Green, and J.O. Maloney, Perry’s Chemical Engineers’ Handbook, Sixth Edition, McGraw-Hill, Inc., New York, 1984.
Pitt W.W., G.L. Hagg and D.D. Lee, “Recovery of Ethanol from Fermentation Broths Using Selective Sorption- Desorption”, Biothernol. Bioeng., 25(1), 123-131, 1983.
Skarstrom C.W., “Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption”, U.S. Patent 2,944,627, assigned to Esso Research and Engineering Company, 1960.
Smith J.M., and H.C. Van Ness, Introduction to Chemical Engineering Thermodynamics, Fourth Edition, McGraw-Hill, Inc., New York, 1987.
Tamura T., “Absorption Process for Gas Separation”, U.S. Patent 3,797,201, assigned to T. Tamura, Tokyo, Japan, 1974.
Teo W.K. and D.M. Ruthven, “Adsorption of Water from Aqueous Ethanol Using 3A Molecular Sieves”, Ind. Eng. Chem. Process Des. Dev., 25(1), 17-21, 1986.
Turnock P.H., and R.H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AIChE J., 17(2), 335-342, 1971.
Vareli G.D., P.G. Demertzis and K. Akrida-Demertzi, “Water and ethanol adsorption on starchy and cellulosic substrates as biomass separation systems”, Z Lebensm Unters Forsch A, 205(3), 204-208, 1997.
Wakao N. and T. Funazkri, “Effect of fluid dispersion coefficients on particle-to-fluid mass transfer coefficients in packed beds. Correlation of Sherwood numbers”, Chem. Eng. Sci., 33(10), 1375–1384, 1978.
Wen C.Y., and L.T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
Yang R.T., Gas Separation by Adsorption Processes, Imperial College Press, London, 1997.
鄭智峰,「醫療用製氧機及平板型吸附塔製氧變壓吸附程序之研究」,國立中央大學,碩士論文,民國96年。
指導教授 周正堂(Cheng-tung Chou) 審核日期 2009-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明