博碩士論文 953204055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:34.204.200.74
姓名 吳秉彥(Ping-yen Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
(Simulation of concentration and recovery of CO, CO2 and H2 in gas mixture from gasification process by pressure swing adsorption)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬
★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析
★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究
★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗
★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗
★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬
★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估★ 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 煤炭先經過粉煤機磨成粉狀後送入氣化爐內,與空氣在高溫高壓下混合燃燒而產生粗煤氣,再經過除塵、除硫後成為乾淨的合成氣,其主要成分為一氧化碳、二氧化碳、甲烷與氫氣。藉由變壓吸附法可以產出高濃度的氫氣做為能源使用,以應用於新興能源的供應上;而將二氧化碳回收封存則可減少其對溫室效應造成的影響,達到兼顧能源與環保的雙重目標。
變壓吸附法為一分離氣體混合物之連續性循環程序,利用氣體混合物中各成分對吸附劑之吸附能力的不同而產生的吸附選擇性來篩選氣體,並利用高壓吸附、低壓脫附以得到高濃度的產物。
本研究將利用數值模擬的方法,發展出一套有效的變壓吸附系統以分離合成氣,達到濃縮產生高濃度氫氣與回收一氧化碳、二氧化碳的目標。模擬上將分成三個階段,利用多塔之變壓吸附製程與吸附劑的搭配,處理組成為55%一氧化碳、33%氫氣、12%二氧化碳的合成氣體;並且探討各操作變數(如:進料壓力、吸附塔塔長、步驟時間等)對模擬結果的影響,尋求最佳的分離操作條件,以做為未來建立大規模工廠設備之參考。
摘要(英) Coal is sented into the gasifier and burned with air at high temperature and pressure to generate the raw gas. After passing through gas clean-up system the raw gas becomes the syngas with main components such as carbon monoxide, carbon dioxide, methane and hydrogen. Pressure swing adsorption can purify hydrogen with high concentration to be used as energy source and recover carbon dioxide to decrease the impact on the greenhouse effect. For energy source and environment protection, it is important to separate these two components and to handle them separately.
Pressure swing adsorption is a cyclic process to separate gas mixtures based on the difference of adsorption capacity of each component on adsorbent. This technology consists of gas adsorption at high pressure and desorption at low pressure to produce high-purity product.
This study plans to develop an effective PSA system for achieving the goals of hydrogen purification and recovery of carbon monoxide and carbon dioxide from syngas by using numerical simulation. The PSA process includes three stages. Syngas with 55% carbon monoxide, 33% hydrogen and 12% carbon dioxide to be separated by multi-bed PSA process and several adsorbents are studied. And the optimal operating condition is discussed by varying the operating variables, such as feed pressure, length of adsorber and step time. The simulation results suggest PSA information for the after-IGCC factory design in the future.
關鍵字(中) ★ 二氧化碳
★ 一氧化碳
★ 變壓吸附
★ 氫氣
關鍵字(英) ★ Pressure swing adsorption
★ Hydrogen
★ Carbon Dioxide
★ Carbon monoxide
論文目次 目錄
摘要 i
ABSTRACT ii
目錄 iii
圖目錄 vii
表目錄 x
第一章、緒論 1
第二章、簡介及文獻回顧 5
2-1 變壓吸附之簡介 5
2-1-1 變壓吸附基本原理 5
2-1-2 吸附劑及其選擇性 6
2-1-3 變壓吸附基本操作步驟 7
2-2 文獻回顧 9
2-2-1 PSA程序之發展及改進 9
2-2-2 理論之回顧 12
2-3 研究背景與目的 15
第三章、理論 18
3-1 基本假設 18
3-2 統制方程式 19
3-3 吸附平衡關係式 22
3-4 參數推導 28
3-4-1 軸向分散係數 28
3-4-2 熱傳係數 30
3-5 求解的方法 32
3-5-1 閥公式 32
3-5-2 求解步驟 33
第四章、製程描述 35
4-1 小型系統模擬最佳化 36
4-2 實廠放大設計 38
4-3 氣體性質與吸附參數 41
第五章、數據分析與結果討論 45
5-1 小型系統模擬最佳化 45
5-1-1 第一階段H2-VSA 46
5-1-2 第二階段CO-VSA 49
5-1-3 第三階段CO2-VSA 52
5-2 四塔八步驟H2-PSA程序之模擬 55
5-2-1 進料壓力對製程的影響 56
5-2-2 吸附塔塔長對製程的影響 61
5-2-3 壓力平衡時間對製程的影響 66
5-2-4 閒置時間對製程的影響 71
5-2-5 同向減壓時間對製程的影響 76
5-2-6 第一階段H2-PSA製程總結 81
5-3 四塔八步驟CO-PSA程序之模擬 82
5-3-1 進料壓力對製程的影響 83
5-3-2 吸附塔塔長對製程的影響 88
5-3-3 壓力平衡時間對製程的影響 93
5-3-4 閒置時間對製程的影響 98
5-3-5 同向減壓時間對製程的影響 103
5-3-6 第二階段CO-PSA製程總結 108
5-4 四塔八步驟CO2-PSA程序之模擬 109
5-4-1 進料壓力對製程的影響 110
5-4-2 吸附塔塔長對製程的影響 114
5-4-3 壓力平衡時間對製程的影響 118
5-4-4 閒置時間對製程的影響 122
5-4-5 同向減壓時間對製程的影響 126
5-4-6 第二階段CO2-PSA製程總結 130
第六章、結論 131
符號說明 133
參考文獻 136
附錄A、流速之估算方法 141
附錄B、各數據點詳細資料 145
參考文獻 [1] C.W. Skarstrom, “Method and Apparatus for Fractionating Gaseous Mixtures by Adsorption”, U.S. Patent 2,944,627, assigned to Esso Research and Engineering Company, 1960
[2] P. G. de Montgareuil and D. Domine, “Process for Separating a Binary Gaseous Mixture by Adsorption”, U.S. Patent 3,155,468, assigned to Societe L`Air Liquide, Paris, 1964
[3] R. T. Yang, Gas Separation by Adsorption Processes., Imperial College Press., London, 1997
[4] N.H. Berlin, “Method for Providing an Oxygen-Enriched Environment”, U.S. Patent 3,280,536, assigned to Esso Research and Engineering Company, 1966.
[5] G. Heinze, Belgain Patent 613,267, assigned to Farbenfabriken Bayer A. G., 1962.
[6] D.E. Kowler and R.H. Kadlec, “The Optimal Control of a Periodic Adsorber: Part I. Experiment”, AICHE J., vol. 31, no. 6, pp. 1207-1212, 1972
[7] T. Tamura, “Absorption Process for Gas Separation”, U.S. Patent 3,797,201, assigned to T. Tamura, Tokyo, Japan, 1974.
[8] S. Sircar and T.C. Golden, “Purification of Hydrogen by Pressure Swing Adsorption”, Separation Science and Technology, vol. 35, no. 5, pp. 667-687, 2000
[9] R. Kumar, W.C. Kratz, D.E. Guro, D.L. Rarig and W.P. Schmidt, “Gas Mixture Fractionation to Produce Two High Purity Products by Pressure Swing Adsorption”, Separation Science and Technology, vol. 27, no. 4, pp. 509-522, 1992
[10] D. Diagne, M. Goto and T. Hirose, “New PSA Process with Intermediate Feed Inlet Position Operated with Dual Refluxes-Application to Carbon-Dioxide Removal and Enrichment”, J. Chem. Eng. Japan, vol. 27, no. 1, pp. 85-89, 1994
[11] B.K. Na, K.K. Koo, H. Lee and H.K. Song, “Effect of Rinse and Recycle Methods on The Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon”, Ind. Eng. Chem. Res., vol. 41, no. 22, pp. 5498-5503, 2002
[12] C.H. Lee, J. Yang and H. Ahn, “Effects of Carbon-to-Zeolite Ratio on Layered Bed H2 PSA For Coke Oven Gas”, AICHE J., vol. 45, no. 3, pp. 535-545, 1999
[13] P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh and R. Todd, “Capture of CO2 From Flue Gas Streams with Zeolite 13X by Vacuum-Pressure Swing Adsorption”, Adsorption, vol. 14, no. 4-5, pp. 575-582, 2008
[14] J.G. Jee, M.B. Kim and C.H. Lee, “Adsorption Characteristics of Hydrogen Mixtures in a Layered Bed: Binary, Ternary, and Five-Component Mixtures”, Ind. Eng. Chem. Res., vol. 40, no. 3, pp. 868-878, 2001
[15] Y. Takamura, S. Narita, J. Aoki, S. Hironaka and S. Uchida, “Evaluation of Dual-Bed Pressure Swing Adsorption For CO2 Recovery from Boiler Exhaust Gas”, Separation and Purification Technology, vol. 24, no. 3, pp. 519-528, 2001
[16] P.H. Turnock and R.H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption”, AICHE J., vol. 17, no. 2, pp. 335-342, 1971
[17] L.H. Shendalman and J.E. Mitchell, “A Study of Heatless Adsorption in The Model System CO2 in He(I)”, Chem. Eng. Sci., vol. 27, no. 7, pp. 1449-1458, 1972
[18] S. Nakao and M. Suzuki, “Mass Transfer Coefficient in Cyclic Adsorption and Desorption”, J. Chem. Eng. Japan, vol. 16, no. 2, pp. 114-119, 1983
[19] M.M. Hassan, D.M. Ruthven and N.S. Raghavan, “Air Separation by Pressure Swing Adsorption on a Carbon Molecular Sieve”, Chem. Eng. Sci., vol. 41, no. 5, pp. 1333-1343, 1986
[20] S.J. Doong and R.T. Yang, “Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption: Pore/Surface Diffusion and Equilibrium Models”, AICHE J., vol. 32, no. 3, pp. 397-410, 1986
[21] S.J. Doong and R.T. Yang, “Bidisperse Pore Diffusion Model for Zeolite Pressure Swing Adsorption”, AICHE J., vol. 33, no. 6, pp. 1045-1049, 1987
[22] M.M. Hassan, N.S. Raghvan and D.M. Ruthven, “Pressure Swing Air Separation on a Carbon Molecular Sieve. II: Investigation of a Modified Cycle with Pressure Equalization and No Purge”, Chem. Eng. Sci., vol. 42, no. 8, pp. 2037-2043, 1987
[23] S. Farooq and D.M. Ruthven, “A Comparison of Linear Driving Force and Pore Diffusion-Models for a Pressure Swing Adsorption Bulk Separation Process”, Chem. Eng. Sci., vol. 45, no. 1, pp. 107-115, 1990
[24] J. Yang, S. Han, C. Cho, C.H. Lee and H. Lee, “Bulk Separation of Hydrogen Mixtures by a One-Column PSA Process”, Separations Technology, vol. 5, no. 4, pp. 239-249, 1995
[25] J. Yang, C.H. Lee and J.W. Chang, “Separation of Hydrogen Mixtures by a Two-Bed Pressure Swing Adsorption Process Using Zeolite 5A”, Ind. Eng. Chem. Res., vol. 36, no. 7, pp. 2789-2798, 1997
[26] J.H. Park, H.T. Beum, J.N. Kim and S.H. Cho, “Numerical Analysis on The Power Consumption of The PSA Process for Recovering CO2 from Flue Gas”, Ind. Eng. Chem. Res., vol. 41, no. 16, pp. 4122-4131, 2002
[27] J. Yang and C. H. Lee, “Adsorption Dynamics of a Layered Bed PSA for H2 Recovery from Coke Oven Gas”, AICHE J., vol. 44, no. 6, pp. 1325-1334, 1998
[28] J.H. Park, J.N. Kim and S.H. Cho, “Performance Analysis of Four-Bed H2 PSA Process Using Layered Beds”, AICHE J., vol. 46, no. 4, pp. 790-802, 2000
[29] C. Voss, “Applications of Pressure Swing Adsorption Technology”, Adsorption, vol. 11, no. 1, pp. 527-529, 2005
[30] Y.C Xie, J.P. Zhang, J.G. Qiu, X.Z. Tong, J.P. Fu, G. Yang, H.J. Yan and Y.Q. Tang, “Zeolites Modified by CuCl for Separating CO From Gas Mixtures Containing CO2”, Adsorption, vol. 3, no. 1, pp. 27-32, 1996
[31] N.N. Dutta and G.S. Patil, “Developments in CO Separation”, Gas Separation& Purification, vol. 9, no. 4, pp. 277-283, 1995
[32] L.Q. Zhu, J.L Tu and Y.J. Shi, “Separation of CO-CO2-N2 Gas Mixture for High-Purity CO by Pressure Swing Adsorption”, Gas Separation& Purification, vol. 5, no. 3, pp. 173-176, 1991
[33] C.Y. Wen and L.T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975
[34] R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena, Wiley, New York, 1960
[35] E.N. Fuller, P.D. Schettler and J.C. Giddings, “A Comparison of Methods for Predicting Gaseous Diffusion Coefficients”, J. Gas Chromatogr., vol. 3, pp. 222-227, 1965
[36] E.N. Fuller, P.D. Schettler and J.C. Giddings, “A New Method for Prediction of Binary Gas-Phase Diffusion Coefficients”, Ind. Eng. Chem. Res., vol. 58, no. 5, pp. 18-27, 1966
[37] W.L. McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering, Sixth Edition, McGraw-Hill, Inc., New York, 2001
[38] W.H. McAdams, Heat Transmission, Third Edition, McGraw-Hill, Inc., New York, 1954
[39] W.E. Waldron and S. Sircar, “Parametric Study of A Pressure Swing Adsorption Process”, Adsorption, vol. 6, no. 2, pp. 179-188, 2000
[40] J.M. Smith, H.C. Van Ness and M.M. Abbott, Chemical Engineering Thermodynamics, Sixth Edition, McGraw-Hill, Inc., New York, 2001
[41] R.H. Perry, D.W. Green and J.O. Maloney, Perry’s Chemical Engineers’ Handbook, Sixth Edition, McGraw-Hill, Inc., New York, 1984
[42] J.H Park, J.N. Kim, S.H. Cho, J.D. Kim and R.T. Yang, “Adsorber Dynamics and Optimal Design of Layered Beds for Multicomponent Gas Adsorption”, Chem. Eng. Sci., vol. 53, no. 23, pp. 3951-3963, 1998
[43] Y.C Xie, N.Y. Bu, J. Liu, J.G. Qiu, G. Yang, N.F Yang and Y.Q. Tang, “Adsorbents for Use in The Separation of Carbon Monoxide and Unsaturated Hydrocarbons from Mixed Gases”, U.S. Patent 4,917,711, 1990
[44] K.S. Walton and M.D. LeVan, “A Novel Adsorption Cycle for CO2 Recovery: Experimental and Theoretical Investigations of a Temperature Swing Compression Process”, Separation Science and Technology, vol. 41, no. 3, pp. 485-500, 2006
[45] 北京北大先鋒科技有限公司, 2005年7月25日, 取自http://www.pioneer-pru.com
指導教授 周正堂(Cheng-tung Chou) 審核日期 2009-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明