博碩士論文 953204056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.220.16.184
姓名 宋柏融(Bo-rong Song)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米碳管於準直矽奈米草上成長之研究
(Growth of carbon nanotube on well-aligned silicon nanograss)
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬
★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬
★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬
★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬
★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗利用熱化學氣相沈積法,於高溫下通入乙烯作為碳源生長
奈米碳管。我們將奈米鎳粉體加入乙醇中,利用浸泡法和液滴法塗佈
催化劑於基板上。基板主要分兩類:(1)親水性矽奈米草(2)疏水性矽
奈米草。同時藉由改變催化劑溶液的化學性質、生長溫度、氫氣流量
來觀察奈米碳管的生長情形。接著把奈米碳管鍍上白金後,發現其表
面性質接近超疏水。
實驗結果發現,利用浸泡法於親水性矽奈米草上生長奈米碳管,
會使奈米粉體聚集,生長出管徑粗細不均的奈米碳管。我們將溶液加
入醋酸鉬,發現能使奈米粉體分散,生長出管徑較細的奈米碳管,但
也會形成較多的無晶形碳化合物。使用浸泡法於疏水性矽奈米上生長
奈米碳管,浸泡溶液的表面能大小會影響奈米碳管的生長與否,用乙
醇作為溶液能生長出奈米碳管,用水則量非常少。利用液滴法於疏水
性矽奈米草上生長奈米碳管,比一般的矽基板生長較小區域的奈米碳
管,且碳管的管徑分佈較不均勻。
此外,我們發展了一種不添加金屬催化劑,利用熱化學氣相沈積
生長奈米碳管的方法。將矽奈米草表面沈積一層PTFE薄膜,再將矽奈米草利用熱化學氣相沈積法,於750 ℃下可生長出大量的多壁奈米碳管。
摘要(英) We used a thermal CVD with C2H4 carbon sources to grow CNTs at high temperature. Nickel nanoparticles were used as the catalyst, which can be held in water or ethanol solution, and then spread on a substrate by using dip-coating and drop-coating methods. The substrates include hydrophilic and hydrophobic nanograss. The parameters of solution Chemical property, growth temperature, and hydrogen flow rate were controlled to investigate the CNT morphology.
The results show that using dip-coating method to grow CNTs on the hydrophilic nanograss will make nanoparticles aggregation and lead to the variations in CNT diameter. The nanoparticles can be dispersed as molybdenum (Ⅱ) acetate was dissolved into the solution, which will grow CNTs with smaller diameter, but the amount of amorphous carbon
compound will be greater also. The CNT surface can be transferred to a superhydrophobic state as we deposited Pt film on it.
The surface energy of solution will affect the amount of CNTs when we use a dip-coating method to grow CNTs on the hydrophobic nanograss. The amount of CNTs is greater by ethanol than by water.In addition, using drop-coating method to grow CNTs on the hydrophobic nanograss will make smaller area and wider distribution of CNT diameters than on the silicon wafer.
More interesting, a lot of CNTs were grown at 750 ℃ by depositing a PTFE (polytetrafluoroethylene) film on the hydrophilic nanograss and treating it in the thermal CVD, which demonstrates that we have developed a method to grow CNTs without metal catalyst.
關鍵字(中) ★ 奈米碳管
★ 奈米草
關鍵字(英) ★ carbon nanotube
★ nanograss
論文目次 摘要i
英文摘要ii
誌謝iii
總目錄iv
圖目錄vii
表目錄xiii
第一章 緒論1
1-1 前言1
1-2 研究動機4
第二章 理論與文獻回顧7
2-1 準直矽奈米草結構形成機製7
2-2 疏水與親水的表面結構10
2-3 奈米碳管結構13
2-4 奈米碳管製備方法15
2-5 奈米碳管的形成機製19
2-5.1 熱化學氣相沈積法奈米碳管生長機製19
2-5.2 氫氣對奈米碳管生長的影響21
2-6 奈米結構上生長奈米碳管21
2-6.1 金屬催化劑沈積的方法21
2-6.2 於親水性奈米草上生長奈米碳管24
2-6.3 於疏水性奈米草上生長奈米碳管26
2-6.4以PTFE 薄膜生長奈米碳管27
第三章 實驗方法與流程30
3-1 實驗材料與設備30
3-1.1 基板材料與化學品30
3-1.2 製程設備30
3-1.3 分析儀器31
3-2 實驗流程33
3-3 實驗步驟34
3-3.1 準直矽奈米草的製作34
3-3.2 基板表面親疏水性質改質34
3-3.3 奈米碳管於親水性矽奈米草成長35
3-3.4 奈米碳管於疏水性矽奈米草成長37
3-3.5 奈米碳管與基板的分析37
第四章 結果與討論40
4-1 親水性奈米草成長奈米碳管的研究40
4-1.1 以奈米鎳粉體成長奈米碳管40
4-1.2 醋酸鉬對奈米碳管成長的影響52
4-2 疏水性奈米草成長奈米碳管的研究71
4-2.1 以浸泡法成長奈米碳管71
4-2.2 以液滴法成長奈米碳管76
4-2.3以PTFE 薄膜生長奈米碳管82
第五章 結論99
參考文獻102
參考文獻 [1] G. Wang, Y. Li and Y. Huang, “Structures and electronic properties of peanut-shaped dimers and carbon Nanotubes”, Journal of Physical Chemistry B, 109 (2005) 10957
[2] Rice University:Rick Smalley’s Group Home Page-Image Gallery
[3] S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354 (1991) 56
[4] Z.B. Li, S.Z. Deng and N.S. Xu, “Mechanism of field electron emission from carbon nanotubes”, Frontiers of Physics in China, 3 (2006) 305
[5] Y. Huh, J.Y. Lee, J.H. Lee, T.J. Lee, S.C. Lyu and C.J. Lee,“Selective growth and field emission of vertically well-aligned carbon nanotubes on hole-patterned silicon substrates”, Chemical Physics Letters, 375 (2003) 388
[6] A.K.M. Fazle Kibria, Y.H. Mo, K.S. Park, K.S. Nahm and M.H. Yun,“Electrochemical hydrogen storage behaviors of CVD, AD and LA grown carbon nanotubes in KOH medium”, International Journal of Hydrogen Energy, 26(2001)823
[7] G.E. Froudakis, “Why alkali-metal-doped carbon nanotubes possess high hydrogen uptake”, Nano Letters, 1(2001)531
[8] H. Tang, J. Chen, S. Yao, L. Nie, Y. Kuang, Z. Huang, D. Wang and Z.Ren, “Deposition and electrocatalytic properties of platinum on well-aligned carbon nanotube (CNT) arrays for methanol oxidation”,Materials Chemistry and Physics, 92 (2005) 548
[9] 羅吉宗、戴明鳳、林鴻明、鄭振宗、蘇程裕、吳育民 編著, “奈米科技導論”, 全華科技圖書股份有限公司, (2003)
[10] 陳秉賢, “Antireflection, hydrophilicity and hydrophobicity of well-aligned silicon nanograss”, 中華大學碩士論文, (2006)
[11] Http://www.laogu.com/wz_34630.htm
[12] B. Chapman, “Glow Discharge processes: sputtering and plasma etching”, New York: Wiley, 8 (1980)
[13] 黃俊凱、楊忠諺, “微機電蝕刻製程氣體的選擇”, NDL Nano
Communications, 9 (2002) 33
[14] M.C. Yang, J. Shieh, C.C. Hsu and T.C. Cheng, ”Well-aligned silicon nanograss fabricated by hydrogen plasma dry etching”,Electrochemical and Solid-State Letters, 8 (2005) C131
[15] Hong Xiao 著, 張鼎張、羅正忠 譯, “半導體製程技術導論”, 台灣培生教育出版, 台北市 (2002)
[16] K. Ma, T.S. Chung and R.J. Good, “ Surface energy of thermotropic liquid crystalline polyesters and polyesteramide”, Journal of Polymer Science: Part B: Polymer Physics, 36 (1998) 327
[17] R.N. Wenzel, “Resistance of solid surface to wetting by water”,Industrial and Engineering Chemistry, 28 (1936) 988
[18] X. Gao and L. Jiang, “Water-repellent of water striders”, Nature, 36 (2004) 432
[19] X. Feng and L. Jiang, “Design and creation of
superwetting/antiwetting surfaces”, Advanced Materials, 18 (2006) 3063
[20] T.W. Odom﹐J.L. Huang﹐P. Kim and C.M. Lieber﹐“Structure and electronic properties of carbon nanotubes”, Journal of Physical Chemistry B, 104(2000)2794
[21] Http://ipn2.epfl.ch/CHBU/NTproduction1.htm
[22] Y.S. Park, K.S. Kim, H.J. Jeong, W.S. Kim, J.M. Moon, K.H. An, D.J. Bae, Y.S. Lee, G.S. Park and Y.H. Lee, “Low pressure synthesis of single-walled carbon nanotubes by arc discharge”, Synthetic Metals, 126(2002)245
[23] T.W. Ebbesen, P.M. Ajayan, H. Hiura and K. Tanigaki, “Purification of nanotubes”, Nature, 367(1994)519
[24] 成會明著, “奈米碳管”, 五南出版社, (2004)
[25] S. Lebedkin, P. Schweiss, B. Renker, S. Malik, F. Hennrich, M.Neumaier, C. Stoermer and M. M. Kappes, “Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization”, Carbon, 40 (2002) 417
[26] Http://students.chem.tue.nl/ifp03/synthesis.html
[27] R.T.K. Baker, R.J. Waite, “Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene”,Journal of catalysis, 26 (1972) 51
[28] J.R. Rostrup-Nielsen and D.L. Trimm, “Mechanisms of carbon formation on nickel-containing catalyst”, Journal of Catalysis, (1977) 48
[29] G.G. Tibbetts, M.G. Devour and E.J. Rodda, “An
adsorption-diffusion isotherm and its application to the growth of carbon filaments of iron catalyst particles”, Carbon, 25 (1987) 367
[30] 失宏偉、吴德海、徐才录著, “碳納米管”, 機械工業出版社, (2003)
[31] Y.T. Jang, J.H. Ahn, Y.H. Lee and B.K. Ju,“ Effect of NH3 and thickness of catalyst on growth of carbon nanotubes using thermal chemical vapor deposition”, Chemical Physics Letters, 372 (2003) 745
[32] A. Okita, Y. Suda and A. Oda, ” Effects of hydrogen on carbon nanotube formation in CH4/H2 plasmas”, Carbon, 45 (2007) 1518
[33] Http://elearning.stut.edu.tw/m_facture/Nanotech/Web/ch3.htm
[34] Http://www.reade.com/index.php
[35] Http://www.icmm.csic.es/fis/english/evaporacion_resistencia.html
[36] Y. Murakami, Y. Miyauchi, S. Chiashi and S. Maruyama, “Direct synthesis of high-quality single-walled carbon nanotubes on silicon and quartz substratesChemical”, Chemical Physics Letters, 377 (2003) 49
[37] Ch. Emmenegger, P. Mauron, A. Zuttel, Ch. Nutzenadel, A.Schneuwly, R. Gallay and L. Schlapbach, “ Carbon nanotube
synthesized on metallic substrates”, Applied Surface Science,162-163 (2000) 452
[38] G.S. Choi, Y.S. Cho, K.H. Son and D.J. Kim, “ Mass production of carbon nanotubes using spin-coating of Nanoparticles”,Microelectronic Engineering, 66 (2003) 77
[39] W.E. Alvarez, B. Kitiyanan, A. Borgna and D.E. Resasco,
“Synergism of Co and Mo in the catalytic production of singlewall carbon nanotubes by decomposition of CO”, Carbon, 39 (2001) 547
[40] H. Sato, M. Matsubayashi, T. Sakai, K. Hata, H. Miyake, K. Hiramatsu, A. Oshita and Y. Saito, “Growth characteristics of carbon nanotues on nanotip-formed substrate”, American Vacuum Society, 24 (2006) 1004
[41] X.J. Li and W.F. Jiang, “Enhanced field emission from a nest array of multi-walled carbon nanotubes grown on a silicon nanoporous pillar array”, Nanotechnology, 18 (2007) 065203
[42] C. Li, G. Fang, L. Yuan, N. Liu, L. Ai1, Q. Xiang, D. Zhao, C. Pan and X. Zhao, “Field emission from carbon nanotube bundle arrays grown on self-aligned ZnO nanorods”, Nanotechnology, 18 (2007) 155702
[43] H.V. Jansen, J.G.E. Gardeniers, J. Elders, H.A.C. Tilmans, M. Elwenspoeke, “Applications of fluorocarbon
polymers in micromechanics and micromachining”, Sensors and Actuators A,4142 (1994) 136140
[44] B van der Schoot, Coulometnc sensors, PhD Thesis, University of Twente, (1986)
[45] V. Yanev, S. Krischok, A. Opitz, H. Wurmus, J.A. Schaefer, N. Schwesinger and S.I.U. Ahmed, “Influence of the RF power on the deposition rate and the chemical surface composition of fluorocarbon films prepared in dry etching gas plasma”, Surface Science, 566-568 (2004) 1229
[46] Y. Yamada, O. Tanaike, T.T. Liang, H. Hatori, S. Shiraishi and A. Oya, “Electric double layer capacitance performance of porous carbons prepared by defluorination of polytetrafluoroethylene with potassium”, Electrochemical and Solid-State Letters, 5 (2002) A283
[47] A. Yasuda, N. Kawase, T. Matsui, T. Shimidzu, C. Yamaguchi and H. Matsui, “Carbyne: electrochemical preparation and nanotube formation”, Reactive and Functional Polymers, 41 (1999) 13
[48] A. Yasuda and W. Mizutani, “Carbon nanostructure formation by a reduction of PTFE”, Thin Solid Films, 438-439 (2003) 313
[49] A. Yasuda and W. Mizutan, “Carbon nanotube formation by an electron beam: alignment and space effect of the precursor”, Thin Solid Films, 464-465 (2004) 282
[50] M. Hu, Y. Murakami, M. Ogura, S. Maruyama and T. Okubo,
“Morphology and chemical state of Co–Mo catalysts for growth of single-walled carbon nanotubes vertically aligned on quartz substrates”, Journal of catalysis, 225 (2004) 230
[51] 蔡淑慧, “拉曼光譜在奈米碳管檢測上之應用”, NDL Nano
Communications, 12 (2005) 46
[52] 王順武, ”Effect of process parameters on the resistance of carbon nanotube vias”, 中央大學碩士論文,(2006)
[53] W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces”, Planta, 1 (1997) 202
[54] J.L. He and W.Z. Li, “Deposition of PTFE thin films by ion beam sputtering and a study of the ion bombardment effect”, Nuclear Instruments and Methods in Physics Research B, 135 (1998) 512
[55] Dhananjay S. Bodas, A.B. Mandale and S.A. Gangal, “Deposition of PTFE thin films by RF plasma sputtering on < 1 0 0 > silicon substrates”, Applied Surface Science, 245 (2005) 202
指導教授 周正堂、謝健
(Cheng-Tung Chou、Jiann Shieh)
審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明