博碩士論文 953204063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.15.211.19
姓名 王承宇(Chen-Yu Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用添加劑與載體改質鈷硼觸媒於硼氫化鈉水解產氫之研究
(Hydrogen Production from Catalystic Hydrolysis of NaBH4 solution with modified CoB by using supports and additives)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以硼氫化鈉為還原劑,醋酸鈷為前驅鹽類製備出鈷硼非晶相觸媒,用於硼氫化鈉溶液的水解反應,以鈷硼觸媒為我們反應之觸媒主體,輔以一連串之改質觸媒方式,希望藉由改變觸媒之物理或化學性質以提高產氫速率,此一系列之改質鈷硼觸媒以X-光繞射儀、氮氣吸附儀、穿透式電子顯微鏡、X-光光電子能譜儀等儀器鑑定其物理及表面性質。
CoB活性約為(2400 ml•g-1•min-1),嘗試以鉬、鑭、鋅、鎢四種添加劑加以改質,其中鉬、鎢元素能提高原素態鈷的含量,表面積也隨之提升,而鉬與鎢均提供部分電子轉移給鈷,其氧化物提供良好的分散作用,降低觸媒聚集的機率,因此觸媒整體活性約提升原CoB觸媒的兩倍,MoCoB的活性達5050 ml•g-1•min-1,WCoB的活性達5464 ml•g-1•min-1。
CoB對於硼氫化鈉產氫反應具有良好活性,但是其具有易氧化、易聚集的缺點,因此我們選用SiO2、Al2O3、TiO2、CeO2以及ZrO2等擔體來改質CoB 觸媒,CoB/SiO2觸媒具有高的比表面積以及較高的Co元素態比例,同時CoB/SiO2、CoB/TiO2觸媒中有較明顯的電子轉移情形,因此兩者的活性表現也較為突出約有原始CoB的三倍,CoB/SiO2的活性達10586 ml•g-1•min-1,而CoB/TiO2活性達8159 ml•g-1•min-1。
選用改質效果較佳之擔體、促進劑同步進行改質,故選用Mo-CoB/SiO2, W-CoB/SiO2, Mo-CoB/TiO2 and W-CoB/TiO2等觸媒進行反應性測試,而Mo-CoB/SiO2具有較佳的活性,顯現出在擔體上,鉬元素仍具有促進效果,能進一步提升CoB/SiO¬2的活性,而鎢則不具有促進效果,同樣的結果也顯現在CoB/TiO2上。
摘要(英) Amorphous CoB catalyst was prepared by cobalt acetate using sodium borohydride as the reducing agent in this research. The main reaction was hydrolysis of sodium borohydride solution. Different additives were added into CoB to modify its physical and chemical properties in favor of better hydrogen generation rate. The series of modified CoB catalysts were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS).
The hydrogen generation rate for CoB catalyst is about 2400 ml•g-1•min-1. We use four kinds of additives: Mo, La, Zn and W to modify our CoB catalyst. Among these additives, Mo and W can raise the molar ratio of elemental Co which was thought as the active site to the reaction. The oxides of Mo and W can provide dispersion effect, and raise the surface area of the catalyst. Also, the Mo and W can transfer partial electron to Co. Finally, the activity of modified CoB can raise about two times which the hydrogen generation rate of Mo-CoB is 5050 ml•g-1•min-1 and W-CoB is 5464 ml•g-1•min-1.
CoB has proved owns good catalytic activity to hydrolysis reaction. There are some disadvantages to CoB catalyst that it is easy to oxide and aggregate. We choose SiO2、Al2O3、TiO2、CeO2 and ZrO2 as our supports to modify CoB catalyst. CoB/SiO2 catalyst has the higher specific surface area and higher molar ratio of Co0. The electron transfer effect is more apparent to CoB/SiO2 and CoB/TiO2.Therefore, the activities of these two catalysts is outstanding that can achieve about three times than original CoB catalyst. The hydrogen generation rate of CoB/SiO2 is 10586 ml•g-1•min-1 and CoB/TiO2 is 8159 ml•g-1•min-1.
We found Mo and W had good promotion effects and CoB supported on SiO2 or TiO2 showed good catalytic activities. Therefore, we use Mo-CoB/SiO2, W-CoB/SiO2, Mo-CoB/TiO2 and W-CoB/TiO2 to test our activity. The result is that Mo-CoB/SiO2 can show the better activity. This may indicate that on the support, Mo can show the promoting effect but W can’t. The same situation is appeared to CoB/TiO2. The hydrogen generation rate is 13620 ml•min-1•g-1 to Mo-CoB/SiO2.
關鍵字(中) ★ 硼氫化鈉
★ 產氫
★ 鉬
★ 鎢
★ 二氧化矽
★ 二氧化鈦
關鍵字(英) ★ TiO2
★ SiO2
★ Co
★ Mo
★ hydrogen generation
★ sodium borohydride
論文目次 中文摘要 i
Abstract ii
Table of Contents iv
List of Figures vii
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Literature review 8
2.1 Hydrolysis of sodium borohydride 8
2.2 Noble catalysts 8
2.3 Amorphous alloy 10
2.4 Supported catalysts 12
2.5 Hydrogen generator 13
Chapter 3 Experimental 28
3.1 Materials 28
3.2 Catalysts preparation 28
3.2.1 Preparation of modified CoB catalyst 28
3.3 Catalysts characterization 29
3.3.1 Nitrogen sorption 29
3.3.2 X-ray diffraction (XRD) 30
3.3.3 Transmission electron microscopy (TEM) 30
3.3.4 X-ray photoelectron spectroscopy (XPS) 30
3.4 Catalytic activity test 31
Chapter 4
Hydrogen production from catalytic hydrolysis of sodium borohydride solution using modified CoB catalysts 32
Abstract 32
4.1 Introduction 32
4.2 Experimental 34
4.2.1 Materials 34
4.2.2 Catalyst preparation 34
4.2.3 Catalyst characterization 34
4.2.4 Catalytic activity 36
4.3 Results and discussion 36
4.3.1 Characterization of catalyst 36
4.3.2. Catalytic activity 38
4.3.3. Effect of NaOH 40
4.3.4. Effect of temperature 41
4.4 Conclusion 41
Chapter 5
Hydrogen production by catalytic hydrolysis of sodium borohydride solution using supported CoB catalysts 58
Abstract 58
5.1 Introduction 58
5.2 Experimental 61
5.2.1 Materials 61
5.2.2 Catalyst preparation 61
5.2.3 Catalyst characterization 62
5.2.4 Catalytic activity 63
5.3 Results and discussion 63
5.3.1 Characterization 63
5.3.2 Catalytic activity 65
5.3.3 Effect of temperature 67
5.3.4 Effect of NaBH4 68
5.3.5 Effect of NaOH 68
5.3.6 Effect of loading amount 69
5.4 Conclusion 70
Chapter 6
Hydrogen Production from Catalytic Hydrolysis of NaBH4 solution with supported CoB catalyst: study the support effect (SiO2 or TiO2) and the promoter effect (Mo or W) 101
Abstract 101
6.1 Introduction 101
6.2 Experimental 103
6.2.1. Materials 103
6.2.2 Catalyst preparation 104
6.2.3 Catalyst characterization 104
6.2.4 Catalytic activity 105
6.3 Results and discussion 105
6.3.1 Characterization 105
6.3.2 Catalytic activity 107
6.3.3 Effect of temperature 109
6.4 Conclusion 110
Summary 123
References 125
參考文獻 Amendola S. C., Sharp-Goldman S. L., Janjua M. S., Kelly M. T., Petillo P. J., Binder M., “An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst.” J. Power Sources 85 (2000) 186.
Amendola S. C., Sharp-Goldman S. L., Janjua M. S., Spencer N. C., Kelly M. T., Petillo P. J., Binder M., “A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst” Int. J. Hydrogen Energy 25 (2000) 969.
Bai Y., Wu C., Wu F., Yi B., “Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution” Mater. Lett. 60 (2006) 2236.
Chen X., Li H., Luo H., Qiao M., “Liquid phase hydrogenation of furfural to furfuryl alcohol over Mo-doped Co-B amorphous alloy catalysts” Appl. Catal. A : Gen. 233 (2002) 13.
Dai H. B., Liang Y., Wang P., Cheng H. M., “Amorphous cobalt–boron/nickel foam as an effective catalyst for hydrogen generation from alkaline sodium borohydride solution” J. Power Sources 177 (2008) 17.
Deng J. F., Chen H. Y., “A Novel Amorphous Ni-W-P Alloy Powder and Its Hydrogenation Activity” J. Mater. Sci. Lett. 12 (1993) 1508.
Dai W. L., Qiao M. H., Deng J. F., “XPS studies on a novel amorphous Ni-Co-W-B alloy powder” Appl. Sur. Sci. 120 (1997) 119.
Deng J. F., Yang J., Sheng S. S., Chen H. R., Xiong G. X., “The Study of Ultrafine Ni-B and Ni-P Amorphous Alloy Powders as Catalysts” J. Catal. 150 (1994) 434.
Davis W. D., Mason L. S., Stegeman G., “The heats of formation of Sodium borohydride, Lithium borohydride and Lithium Aluminium Hydride” J. Am. Chem. Soc. 71 (1949) 2775.
Endres S., Kampe P., Kunert J., Drochner A., Vogel H., “The influence of tungsten on structure and activity of Mo–V–W-mixed oxide catalysts for acrolein oxidation” Appl. Catal. A : Gen. 325 (2007) 237.
Geng J., Jefferson D. A., Johnson B. F. G., “The unusual nanostructure of nickel–boron catalyst” Chem. Commun. (2007) 969.
Gervasio D., Tasic S., Zenhausern F., “Room temperature micro-gydrogen-generator” J. Power Sources 149 (2005) 15.
Gunn S. R., Green L. G., “The heat of solution of sodium borohydride and the entropy of borohydride ion” J. Am. Chem. Soc. 77 (1955) 6197.
Hua D., Hanxi Y., Xinping A., Chuansin C., “Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst” Int. J. Hydrogen Energy 28 (2003) 1095.
Hou Y., Wang Y., He F., Han S., Mi Z., Wu W., Min E., “Liquid phase hydrogenation of 2-ethylanthraquinone over La-doped Ni–B amorphous alloy catalysts” Mater. Lett. 58 (2004) 1267.
Hou Y., Wang Y., He F., Mi W., Li Z., Mi Z., Wu W., Min E., “Effects of lanthanum addition on Ni-B/γ-Al2O3 amorphous alloy catalysts used in anthraquinone hydrogenation” Appl. Catal. A : Gen. 259 (2004) 35.
Hasegawa Y., Haneda M., Kintaichi Y., Hamada H., “Zn-promoted Rh/SiO2 catalyst for the selective reduction of NO with H2 in the presence of O2 and SO2” Appl. Catal. B : Environ. 60 (2005) 41.
Haschke H., Nowotny H., “Untersuchungen in den Dreistoffen (Mo,W)–(Fe,Co,Ni)–B” Monasch. Chem. Bd. 97 (H5) (1966) 1458.
Ingersoll J. C., Mani N., Thenmozhiyal J. C., Muthaiah A., “Catalytic hydrolysis of sodium borohydride by a novel nickel–cobalt–boride catalyst” J. Power Sources 173 (2007) 450.
Jeitschko W., “The crystal structure of MoCoB and related compounds” Acta. Crystallogr. 930 (1968) B (24).
Jiang J., Dezsi U., Lin X., “A study of the preparation conditions of Fe---B amorphous alloy powders produced by chemical reduction” J. Non-Cryst. Solids 124 (1990) 139.
Ji T. H., Shi H. J., Zhao J. G., Zhao Y. Z., “Synthesis of Co–B/resin nanoparticles and heat treatment effect on their magnetic properties” J. Magn. Magn. Mater. 212 (2000) 189.
Saida J., Inoue A., Masumoto T., “The Effect of Reaction Condition on Composition and Properties of Ultrafine Amorphous Powders in (Fe, Co, Ni)-B Systems Prepared by Chemical Reduction” Metall. Trans. A 22A (1991) 2125.
Jeong S. U., Kim R. K., Cho E. A., Kim H. J., Nam S. W., Oh I. H., Hong S. A., Kim S. H., “A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst” J. Power Sources 144 (2005) 129.
Jeong S. U., Cho E. A., Nam S. W., Oh I. H., Jung U. H., Kim S. H., “Effect of preparation method on Co–B catalytic activity for hydrogen generation from alkali NaBH4 solution” Int. J. Hydrogen Energy 32 (2007) 1749.
Kuz’ma Y. B., Kripyakevich P. I., Chepiga M. V., “Crystal structures of the compounds MoCoB, WCoB and WFeB” J. Struct. Chem. 9 (1968) 2.
Krishnan P., T. Yang H., Lee W. Y., Kim C. S., “PtRu-LiCoO2—an efficient catalyst for hydrogen generation from sodium borohydride solutions” J. Power Sources 143 (2005) 17.
Krishnan P., Hsuen K. L., Yim S. D., “Catalysts for the hydrolysis of aqueous borohydride solutions to produce hydrogen for PEM fuel cells” Appl. Catal. B : Environ. 77 (2007) 206.
Kojima Y., Suzuki K. I., Fukumoto K., Sasaki M., Yamamoto T., Hayashi Y. H., “Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide” J. Hydrogen Energy 27 (2002) 1029.
Kreevoy M. M., Jacobson R. W. “The rate of decomposition of NaBH4 in basic aqueous solutions” Ventron Alembic. 15 (1979) 2.
Lebugle A., Axelsson U., Nyholm R., Martensson N., “Experimental L and M core level binding energies for the metals 22Ti to 30Zn” Phys. Scr. 23 (1981) 825.
Linderoth S., Morup S., Meagher A., Larsen J., Bentzon M. D., Clausen B. S., Koch C. J., Wells S., Charles S. W., “Amorphous to crystalline transformation of ultrafine Fe-B particles” J. Magn. Magn. Master. 81 (1989) 138.
Linderoth S., Morup S., “Chemically prepared amorphous Fe-B particles: Influence of pH on the composition” J. Appl. Phys 67 (1990) 4472.
Lee S. P., Chen Y. W., “Nitrobenzene hydrogenation on Ni–P, Ni–B and Ni–P–B ultrafine materials” J. Mol. Catal., A 152 (2000) 213.
Li H., Chen X., Wang M. I., Xu Y., “Selective hydrogenation of cinnamaldehyde to cinnamyl alcohol over an ultrafine Co-B amorphous alloy catalyst” Appl. Catal. A: Gen. 225 (2002) 117.
Liu Y. C., Huang C. Y., Chen Y. W., “Hydrogenation of p-chloronitrobenzene on Ni-B nanometal catalysts” J. Nanopart. Res. 8 (2006) 223.
Lee J. Y., Kong K. Y., Jung C. R., Cho E., Yoon S. P., Han J. H., Lee T. G., Nam S. W., “A structured Co–B catalyst for hydrogen extraction from NaBH4 solution” Catal. Today 120 (2007) 305.
Linderoth S., Mùrup S., “Amorphous TM1-xBx Alloy Particles by Chemical Reduction” J. Appl. Phys. 69(8) (1991) 5256.
Li H., Li H., Wang M., “Glucose hydrogenation over promoted Co–B amorphous alloy catalysts” Appl. Catal., A : Gen. 207 (2001) 129.
Liu B. H., Li Z. P., Suda S., “Nickel- and cobalt-based catalysts for hydrogen generation by hydrolysis of borohydride” J. Alloys Compd. 415 (2006) 288.
Lee J., Kong K. Y., Jung C. R., Cho E., Yoon S. P., Han J., Lee T. G., Nam W., “A structured Co-B catalyst for hydrogen extraction from NaBH4 solution” Catal. Today 120 (2007) 305.
Moulder J. F., Stickle W. F., Sobol P. E., Bomben K. D., “Handbook of X-ray Photoelectron Spectroscopy” PA: Physical Electronics, Inc., Minnesota, USA 1995.
McIntyre N. S., Cook M. G., “X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper” Anal. Chem. 47 (1975) 2208.
Okamoto Y., Nitta Y., Imanaka T., Teeranishi S., “Surface Characterization of Nickel Boride and Nickel Phosphide Catalysts by Xray Photoelectron Spectroscopy” J. Chem. Soc., Faraday Trans. 75 (1979) 2027.
Ozkar S., Zahmakıran M., “Hydrogen generation from hydrolysis of sodium borohydride using Ru(0) nanoclusters as catalyst” J. Alloys Compd. 404-406 (2005) 728.
Patel N., Guella G., Guella A., Miotello A., Patton B., Zanchetta C., Mirenghi L., Rotolo P., “Thin films of Co–B prepared by pulsed laser deposition as efficient catalysts in hydrogen producing reactions” Appl. Catal., A: Gen. 323 (2007) 18.
Pinto A. M. F. R., Falcão D. S., Silva R. A., Rangel C. M, “Rangel Hydrogen generation and storage from hydrolysis of sodium borohydride in batch reactors” Int. J. Hydrogen Energy 31 (2006) 1341.
Peña-Alonso R., Sicurelli A., Callone E., Carturan G., Raj R., “A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells” J. Power Sources 165 (2007) 315.
Richardson B. S., Birdwell J. F., Pin F. G., Jansen J. F., Lind R. F., “Sodium borohydride based hybrid power system” J Power Sources 21 (2005) 145.
Shen J., Hu Y. Z., Zhang L. F., Li Y. Z., Chen Y., “The preparation of Ni-P ultrafine amorphous alloy particles by chemical reduction” Appl. Phys. Lett. 59 (1991) 3545.
Shen J., Hu Y. Z., Hsia Y. F., Chen Y., “Fe-P-B Ultrafine Amorphous Particles Produced by Chemical Reduction” Appl. Phys. Lett. 59 (1991) 2510.
Saida J., Inoue A., Masumoto T., “Preparation of ultra-fine amorphous powders by the chemical reduction method and the properties of their sintered products” Mater. Sci. Eng. A 133 (1991) 771.
Shen, Hu J. Y. Z., Zhang Q., Zhang L. F., Chen Y., “Investigation of Ni-P-B ultrafine amorphous alloy particles produced by chemical reduction” J. Appl. Phys. 71 (1992) 5217.
Schreifels J. A., Mayburg P. C., Swartz W. E., “X-ray photoelectron spectroscopy of Nickel Boride Catalysts: Correlation of Surface States with Reaction Products in the Hydrogenation of Acrylonitrile” J. Catal. 65 (1980) 195.
Strizki M., Shan S., United States Patent US 6,939,529 B2, Millennium Cell, Inc., Eatontown, NJ (US) (2002).
Schlesinger H. I., Brown H. C., Finholt A. E., Gilbreath J. R., Hoekstra H. R., Hyde E. K., “Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen.” J. Am. Chem. Soc. 75 (1953) 215.
Stockmayer W. H., Rice D. W., Stephenson C. C., “Thermodynamic properties of sodium borohydride andaqueous borohydride ion” J. Am. Chem. Soc. 77 (1955) 1980.
Taiwan Fuel Cell Information, http://www.tfci.org.tw/. 台灣燃料電池資訊網
Tong D. G., Chu W., Luo Y. Y., Ji X. Y., He Y., “Effect of crystallinity on the catalytic performance of amorphous Co–B particles prepared from cobalt nitrate and potassium borohydride in the cinnamaldehyde hydrogenation” J. Mol. Catal. A: Chem. 265 (2007) 195.
Tong D. G., Han X., Chu W., Chen H., Ji X. Y., “Preparation of mesoporous Co–B catalyst via self-assembled triblock copolymer templates” Mater. Lett. 61 (2007) 4679.
Wonterghem J. V., Moyup S., Christion J. W., Charles S., Wells W. S., “Formation of ultra-fine amorphous alloy particles by reduction in aqueous solution” Nature 322 (1986) 622.
The 16th edition of Lange’s Handbook of Chemistry. J. G. Speight, PA: McGraw-Hill, 2004.
Wang Y. D., Ai X. P., Cao Y. L., Yang H. X., “Exceptional electrochemical activities of amorphous Fe–B and Co–B alloy powders used as high capacity anode materials” Electrochem. Commun. 6 (2004) 780.
Wu C., Wu F., Bai Y., Yi B., Zhang H., “Cobalt boride catalysts for hydrogen generation from alkaline NaBH4 solution” Mater. Lett. 59 (2005) 1748.
Xue D. S., Li F. S., Zhou R. J., “Control of the boron content in amorphous powder prepared by borohydride reduction” J. Mater. Sci. Lett. 9 (1990) 506.
Xia Z. T., Chan S. H., “Feasibility study of hydrogen generation from sodium borohydride solution for micro fuel cell applications” J. Power Sources 152 (2005) 46.
Xu D., Zhang H., Ye W., “Hydrogen generation from hydrolysis of alkaline sodium borohydride solution using Pt/C catalyst” Catal. Commun. 8 (2007) 1767.
Ye W., Zhang H., Xu D., Ma L., Yi B., “Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst” J. Power Sources 164 (2007) 544.
Yu Z. B., Qiao M. H., Li H. X., Deng J. F., “Preparation of amorphous Ni-Co-B alloys and the effect of cobalt on their hydrogenation activity” Appl. Catal. A: Gen. 163 (1997) 1.
Zhang J. S., Delgass W. N., Fisher T. S., Gore J. P., “Kinetics of Ru-catalyzed sodium borohydride hydrolysis” J. Power Sources 164 (2007) 772.
Zhang Q., Wu Y., Sun X., Ortega J., “Kinetics of catalytic hydrolysis of stabilized sodium borohydride solutions” Ind. Eng. Chem. Res. 46 (2007) 1120
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2009-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明