博碩士論文 953206001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.139.72.148
姓名 林昇宏(Shenghung Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以非熱電漿結合觸媒去除溫室效應氣體C3F8之探討
(C3F8 abatement via plasma catalysis)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 溫室效應氣體(包括CO2、CH4、N2O、CFCs、PFCs…等。)之大量排放導致全球暖化持續加劇。其中,全氟化物(Perfluorinated compounds, PFCs) 被廣泛使用於半導體與光電產業,其全球暖化潛勢(Global warming potential, GWP)高出二氧化碳數千至數萬倍,在PFCs中,C3F8於近年來已逐漸取代CF4及C2F6成為高科技產業CVD腔體清洗之主要製程氣體。在全球環保意識與溫室氣體減排壓力下,製程最佳化、替代化學品、回收再利用及破壞削減等四方向為現階段因應全氟化物減量策略,其中相較於替代化學品的開發不易、回收再利用的高成本,破壞削減為目前較易著手之方向。本研究以電漿結合觸媒進行C3F8氣流之破壞處理,探討放電反應器之內電極與介電材質對C3F8轉化之影響以及非熱電漿結合觸媒反應器去除C3F8之交互作用及反應機制探討。
結果顯示氣流中添加O2有助於轉化C3F8,C3F8轉化效率隨內電極尺寸增大而上升,而螺紋(screw)內電極之放電效果也較平滑表面形式(tube)的管狀(tube)內電極為佳。此外,陶瓷材質介電質之C3F8轉化效率較石英為高,操作於1/2” (screw)內電極與陶瓷材質反應器之情況下,系統最佳的C3F8轉化效率為52 %。於放電產物方面,氣流中添加O2其放電後FT-IR測得主要副產物為CF4;而添加O2與Ar者,可有助於C3F8轉化生成之CF4繼續進行反應,其主要副產物為CF4、COF2、CO與CO2等。此外,本研究結果亦顯示本系統可用於C3F8之去除,放電後氣流對全球暖化的衝擊可獲得改善。
電漿結合觸媒反應器(PCR)去除C3F8在能量效率或CO2選擇率方面均優於填充床反應器(PBR),且由於上述兩反應之最顯著差異乃在於反應器中之填充顆粒是否具觸媒活性,因此可研判觸媒對於電漿結合觸媒之效能提升具決定性之影響。根據電漿物理、觸媒熱催化與電漿/觸媒之間交互作用等三種觀點,透過模式分析及相關實驗之探討,其結果發現能量效率以及CO2選擇率之改善乃藉由兩種不同之機制,前者乃因電漿所生成的活性物種(如激發態物種、自由基和離子)即使於低溫下亦可誘發觸媒之催化反應;後者則為O3經觸媒分解後所產生之活性物種可進一步將CO氧化成CO2。
摘要(英) Perfluorinated compounds (PFCs) are one greenhouse gases that Kyoto Protocol aimed to reduce to prevent global warming from anthropogenic emissions of various greenhouse gases. Due to the high global warming potential, emissions of PFCs have caused much public concern. PFCs are widely used in the semiconductor and photonic industry for plasma etching and chamber clean. Since Kyoto Protocol has come into effect, more efforts are made to develop more efficient strategies for abating PFCs.
Among the various strategies for PFCs abatements, destruction is still the better choices. Non-thermal plasma technologies have been demonstrated to be effective in removing a variety of gaseous pollutants. However, the performance of the plasma system still has some room for improvement. The energy efficiency and product selectivity are the drawbacks which have to be modified. Hence, this study applies nonthermal plasma discharge to remove C¬3F8¬ and investigates the system performance in the various inner electrodes and dielectric material of the reactor for dielectric barrier discharge (DBD), and the interaction of the plasma and catalyst in combined plasma catalysis (CPC).
In this study, it is indicated the addition of O2 could enhance the removal efficiency for C3F8. The removal efficiency for C3F8 increases with the size of the inner electrode, and the “screw” shape of the inner electrode could have better performance. As for the dielectric material, ceramic may be better than quartz. The highest removal efficiency for C3F8 is 52 % with the 1/2”(screw) inner electrode, and ceramic, and the major by-product is CF4. Furthermore, the addition of Ar could improve the byproduct, and CF4, COF2, CO, CO2, NO are the major components. It could reduce the impact of global warming caused by PFCs emissions through the treatment of plasma discharge.
For C3F8 abatement, the plasma combined with γ-Al2O3 (with catalytic activity, PCR) have a better performance than that with α-Al2O3 (without catalytic activity, PBR). It is interesting to find that the enhancement of the energy efficiency and CO2 selectivity are from different mechanisms. The former is caused by the active species from plasma reaction, and the latter is mainly attributed to the active species from the decomposition of O3 on the surface of the catalyst so that CO could be oxidized to CO2.
關鍵字(中) ★ 全氟化物
★ 觸媒
★ 去除效率
★ 內電極
★ 非熱電漿
關鍵字(英) ★ catalyst
★ inner electrode
★ perfluorinated compounds
★ non-thermal plasma
論文目次 -目錄-
圖目錄 III
表目錄 V
第一章 前言 1
1.1 研究緣起 1
1.2 研究內容 2
第二章 文獻回顧 3
2.1 八氟丙烷基本物化特性之電漿反應 6
2.1.1 八氟丙烷基本物化特性 6
2.1.2 電漿中C3F8的主要反應機制 8
2.2 電漿反應 10
2.2.1 電漿種類形式 11
2.3 全氟化物排放減量控制技術 16
2.4 單階段式電漿結合觸媒反應器之電漿與觸媒交互作用機制 24
第三章 研究設備與方法 31
3.1 實驗設備 32
3.2 實驗方法 39
3.3 數據計算 42
第四章 結果與討論 44
4.1 O2添加濃度對於轉化C3F8之影響 44
4.2 不同內電極組合之介電質放電反應器轉化C3F8 49
4.2.1 內電極尺寸及形式與放電能量之關係 49
4.2.2.內電極尺寸及形式對C3F8去除之影響 51
4.2.3 石英反應器放電系統去除C3F8之尾氣分析 53
4.3.1 反應器介電材質對放電能量之影響 56
4.3.2反應器介電材質對C3F8 轉化之影響 58
4.3.3 陶瓷介電質放電系統尾氣組成 60
4.4 C3F8反應途徑探討 62
4.5 觸媒活性測試 67
4.6 PCR和PBR去除C3F8之結果比較 68
4.7 PCR去除C3F8之交互作用及反應機制探討 70
4.7.1 不同顆粒尺寸 71
4.7.2 熱催化作用 74
4.7.3 電漿生成的活性物種與觸媒之間的交互作用 75
第五章 結論與建議 83
5.1 結論 83
5.2 建議 84
參考文獻 85
參考文獻 Abbott, H. L., A. Bukoski, D. F. Kavulak, and I. Harrison (2003), “Dissociative chemisorption of methane on Ni(100): Threshold energy from CH4(2ν3) eigenstate-resolved sticking measurements”, J. Chem. Phys. 119, pp. 6407 - 6410.
Beck, R. D., P. Maroni, D. C. Papageorgopoulos, T. T. Dang, M. P. Schmid, and T. R. Rizzo (2003), “Vibrational mode-specific reaction of methane on a nickel surface”, Science, 302, pp. 98 -100.
Breitbarth, F. W., D. Berg, K. Dumke, and H. J. Tiller (1997), “Investigation of the low-pressure plasma-chemical conversion of fluorocarbon waste gases”, Plasma Chemistry and Plasma Processing, Vol. 17, pp. 39 - 57.
Chang, C. L. and T. S. Lin (2005), “Decomposition of toluene and acetone in packed dielectric barrier discharge reactors”, Plasma Chemistry and Plasma Processing, Vol. 25, pp. 227 - 243.
Chang, M.B. and S. J. Yu (2001), “An atmospheric-pressure plasma process for C2F6 removal”, Environmental Science & Technology, Vol. 35, 8, pp. 1587 - 1592.
Chavadej, S., W. Kiatubolpaiboon, P. Rangsunvigit, and T. Sreethawong (2007), “A combined multistage corona discharge and catalytic system for gaseous benzene removal”, J. Mol. Catal. A-Chem., 263, pp. 128 - 136.
Chen, Z. and V. K. Mathur (2002), “Nonthermal plasma for gaseous pollution control”, Ind. Eng. Chem. Res., 41, pp. 2082 - 2089.
Chen, H. L., H. M. Lee, and M. B. Chang (2006), “Enhancement of energy yield for ozone production via packed-bed reactors”, Ozone: Science & Engineering, Vol. 28, pp. 111 - 118.
Christophorous, L. G. and J. K. Olthoff (1998), “Fundamental electron interactions with plasma processing gases”, J. Phys. Chem. Ref. Data, Vol. 27, No. 5, pp. 890 - 911.
Ding, H. X., A. M. Zhu, F. G. Lu, Y. Xu, J. Zhang, and X. F. Yang (2006), “Low-temperature plasma-catalytic oxidation of formaldehyde in atmospheric pressure gas streams”, J. Phys. D-Appl. Phys., 39, pp. 3603 - 3608.
Eliasson, B., M. Hirth, and U. Kogelschatz (1987), “Ozone synthesis from oxygen in dielectric barrier discharges”, Journal of Physics D: Applied Physics, Vol. 20, pp. 1421 - 1437.
Fiala, A., M. Kiehlbauch, S. Mahnovski, and D. B. Graves (1999), “Model of point-of use plasma abatement of perfluorinated compounds with an inductively coupled plasma”, Journal of Applied Physics, Vol. 86, pp. 152 - 162.
Fujimi, M., G. Suwa, and K. Nagano (2001), “PFC emissions reductions in the semiconductor operations division at Deiko Epson Corporation”, ISESH 8th Annual Conference, Kenting, Taiwan.
Futamura, S., H. Einaga, H. Kabashima, and L. Y. Hwan (2004), “Synergistic effect of silent discharge plasma and catalysts on benzene decomposition”, Catal. Today., 89, pp. 89 - 95.
Futamura, S., A. Zhang, H. Einaga, and H. Kabashima (2002), “Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants”, Catal. Today., 72, pp. 259.
Halliday D. and R. Resnick (1998), “Fundamentals of physics”, Second Edition, A Wiley-Interscience Publication, New York.
Heath, W. O., S. E. Barlow, T. M. Berqsman, D. L. Lessor, T. M. Orlando, A. J. Peurrung, and R. R. Shah (1995), “Development and analysis of high-energy corona processes for air purification”, U.S. Department of Energy, U.S.A..
Heath, W. and J. Birmingham (1995), “Non-thermal plasma technology for organic destruction”, U.S. Department of Energy, U.S.A..
Higgins, J., A. Conjusteau, G. Scoles, and S. L. Bernasek (2001), “State selective vibrational (2ν3) activation of the chemisorption of methane on Pt(III)”, J. Chem. Phys., 114, pp. 5277 - 5283.
Hitachi S. T. and S. K. Hitachi (1998), “Catalytic decomposition of PFC. A partnership for PFC emissions reductions”, Technical program present, Texas.
Holmblad, P. M., J. Wambach, and I. Chorkendoff (1995), “Molecular beam study of dissociative sticking of methane on Ni(100)”, J. Chem. Phys., 102, pp. 8255 - 8263.
Holzer, F., U. Roland, and F. D. Koinke (2002), “Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 1. Accessibility of the intra-particle volume”, Appl. Catal. B-Environ., 38, pp. 163.
Hung M. C., C. L. Yang, P. H. Wu, S. M. Pan and Y. S. Huang (2001), “Reduction of NF3 usage for optimal AMAT HDP clean recipe”, ISESH 8th Annual Conference, Kenting, Taiwan.
Ibuka S. (1998), “Japan’s use of ClF3, a partnership for PFC emissions reductions”, Technical Program Present, Texas..
Jodzis, S. (2003), “Effect of silica packing on ozone synthesis from oxygen-nitrogen mixtures”, Ozone: Science & Engineering, Vol. 25, pp. 63 - 72.
Juurlink, L. B. F., P. R. McCabe, R. R. Smith, C. L. DiCologero, and A. L. Utz (1999), Eigenstate-resolved studies of gas-surface reactivity: CH4 (ν3) dissociation on Ni (100)”, Phys. Rev. Lett., 83, pp. 868 - 871.
Kang, S. K., J. M. Park, Y. Kim, and S. H. Hong (2003), “Numerical study on influecnes of barrier arrangement on dielectric barrier discharge characteristics”, IEEE Trans. Ind. Appl., Vol. 31, pp. 504 - 510.
Kaushal, S., N. Sharma, and R. B. Vajpayee (2007), “Treatment of acute corneal hydrops with intracameral C3F8 in a patient of pellucid marginal degeneration with keratoglobus”, Clinical and Experimental Ophthalmology, 35, pp. 697 - 699.
Kim, H. H., A. Ogata, and S. Futamura (2006), “Effect of different catalysts on the decomposition of VOCs using flow-type plasma-driven catalysis”, IEEE Transa Plasma Sci., 34, pp. 984.
Kim, H. H., H. Kobara, A. Ogata, and S. Futamura (2005), “Comparative assessment of different non-thermal plasma reactors on energy efficiency and aerosol formation from the decomposition of gas-phase benzene”, IEEE Trans. Ind. Appl. 41, pp. 206 - 214.
Larsen, J. H., P. M. Holmblad, and I. Chorkendoff (1999), “Dissociative sticking of CH4 on Ru(0001)”, J. Chem. Phys., 110, pp. 2637 - 2642.
Lee, B. Y., S. H. Park, S. C. Lee, M. Kang, and S. J. Choung (2004), “Decomposition of benzene by using a discharge plasma-photocatalyst hybrid system”, Catal. Today., 93-95, pp. 769 - 776.
Lee, H.M., M. B. Chang, and K. Y. Wu (2004), “Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric pressure plasmas”, Journal of the Air & Waste Management Association, Vol. 54, 8, pp. 960 - 970.
Levy, R. A., V. B. Zaitsev, K. Aryusook, C. Ravindranath, V. Sigal, A. Misra, S. Kesari, D. Rufin, J. Sees, and L. Hall (1998), “Investigation of CF3I as an environmental benign dielectric etchant”, J. Materials Research, Vol. 13, No. 9, pp. 2643.
Li, Z. H., S. X. Tian, H. T. Wang, and H. B. Tian (2004), “Plasma treatment of Ni catalyst via a corona discharge”, Journal of Molecular Catalysis A: Chemical, Vol. 211, pp. 149 - 153.
Liu, X. Z., J. G. Wang, C. J. Liu, F. He, and B. Eliasson (2003), “Partial oxidation of methane to syngas over Ni-Fe/Al2O3 catalyst with plasma enhanced activity”, Reaction Kinetics and Catalysis Letters, Vol. 79, pp. 69 - 76.
McAdams, R. (2001), “Prospects for non-thermal atmospheric plasmas for pollution abatement”, J. Phys. D-Appl. Phys., 34, pp. 2810.
Mack, H. G., M. Dakkouri, and H. Oberhammer (1991), “Effect of fluorination on the CCC bond angle in propane. Gas-phase structures of 2, 2-difluoropropane and perfluoropropane”, J. Phys. Chem., 95, pp. 3136 - 3138.
Miser, C. S., W. R. Davis, K. L. McNesby, S. H. Hoke, and M. K. Leonning (1998), ”Measurement of carbonyl fluoride, hydrogen fluoride, and other combuction byproducts during fire suppression testing by Fourier transforminfrared spectroscopy”, Proceedings of the Halon Option Technical Working Conference, New Mexico, pp. 190 - 203.
Mizuno, A., A. Chakrabarti, and K. Okazzaki (1993), “Application of corona technology in the reduction of greenhouse gases and other gaseous pollutants”, Nonthermal Plasma for Pollution Control, Penertrante, B. M. and Schultheis, S. E. eds., Berlin: Springer-Verlag, NATO ASI series, Vol. 34, Part B, pp. 165 - 185.
Nicole, J., D. Tsiplakides, S. Wodiunig, and Ch. Comninellis (1997), “Activation of catalyst for gas-phase combustion by electrochemical pretreatment”, Journal of Electrochemical Society, Vol. 144, pp. L312 - L314.
Oda, T. (1999), “Decomposition of dilute trichloroethylene by nonthermal plasma”, IEEE Trans. Ind. Appl., Vol. 35, No. 2, pp. 373 - 379.
Oda, T. (2001), “Decomposition of dilute trichloroethylene by using non-thermal plasma processing-frequency and catalyst effects”, IEEE Trans. Ind. Appl., Vol. 37, No. 4, pp. 965 - 970.
Oda, T. (2003), “Non-thermal plasma processing for environmental protection: decomposition of dilute VOCs in air”, Journal of Electrostatics, 57, pp. 293 - 311.
Ogata1, A., N. Shintani, K. Mizono, S. Kushiyama, and T. Yamamoto (1999), “Decomposition of benzene using a nonthermal plasma reactor packed with ferroelectric pellets”, IEEE Trans. Ind. Appl., 35, pp. 753.
Ogata2, A., K. Yamanouchi, K. Mizuno, S. Kushiyama, and T. Yamamoto (1999), “Decomposition of benzene using alumina-hybrid and catalyst-hybrid plasma reactors”, IEEE Trans. Ind. Appl., 35, pp. 1289 - 1295.
Ogata, A., D. Ito, K. Mizuno, S. Kushiyama, and T. Yamamoto (2001), “Removal of dilute benzene using a zeolite-hybrid plasma reactor”, IEEE Trans. Ind. Appl., Vol. 37, pp. 959 - 964.
Ohsawa, A., R. Morrow, and A. B. Murphy (2000), “An Investigation of a DC dielectric barrier discharge using a disc of glass beads”, J. Phys. D-Appl. Phys. 33, pp. 1487.
Pruette L. C., S. M. Karecki and Reif R. (1998), “Evaluation of trifluoroacetic anhydride as an alternative plasma enhanced chemical vapor deposition chamber clean chemistry”, J. Vacuum Sci. Technol. A, Vol. 16, No. 3, pp. 1577.
Rettner, C. T. and H. Stein (1987), “Effect of vibrational energy on the dissociative chemisorption of N2 on Fe(III)”, J. Chem. Phys. 87, pp. 770 - 771.
Roland, U., F. Holzer, and F. D. Kopinke (2005), “Combination of non-thermal and heterogeneous catalysis for oxidation of volatile organic compounds. Part 2. Ozone decomposition and deactivation of γ-Al2O3”, Appl. Catal. B-Environ. 58, pp. 217.
Romm, L., O. Citri, R. Kosloff, and M. Asscher (2000), “A remarkable heavy atom isotope effect in the dissociative chemisorption of nitrogen Ru(001)”, Journal of Chemical Physics, Vol. 112, pp. 8221 - 8224.
Romm, L., G. Katz, R. Kosloff, and M. Asscher (1997), “Dissociative chemisorption of N2 on Ru(001) enhanced by vibrational and kinetic energy: Molecular beam experiments and quantum mechanical calculations”, J. Phys. Chem. B., 101, pp. 2213 - 2217.
Rosocha, L. A. (2005), “Nonthermal plasma applications to the environmental: gaseous electronics and power conditioning”, IEEE Trans. Plasma Sci., 33, pp. 129.
Schmidt-Szalowski, K. and A. Borucka (1989), “Heterogeneous effects in the process of ozone synthesis in electrical discharges”, Plasma Chemistry and Plasma Processing, Vol. 9, pp. 235 - 255.
Seeley, S. P., P. Chandler, S. Cottle, and P. Mawle (1997), “Effective PFC gas abatement in a production environment”, Semiconductor Fabtech-10th Edition, BOC Edwards Exhaust Management Systems, Nailsea, UK.
Takuma, T. (1991), “Field behavior at a triple junction in composite dielectric arrangements”, IEEE Trans. Ind. Appl., Vol. 26, pp. 500 - 509.
Tas, M. A. (1995), “Plasma-induced catalysis: A feasibility study and fundamentals”, Ph. D. Dissertation, Eindhoven University of Technology, Dutch.
Techaumnat, B. and T. Takuma (June 5-9, 2005), “Field intensification at the contact point between a conducting plane and a spherical or an elliptic cylinder”, Proceedings of 2005 International Symposiums on Electrical Insulating Materials, Kitakyushu, Japan.
Walker, A. V. and D. A. King (2000), “Dynamics of dissociative methane adsorption on metals: CH4 on Pt{110}(1X2)”, J. Chem. Phys. 112, pp. 4739 - 4748.
Wang, J. G., C. J. Liu, Y. P. Zhang, K. L. Yu, X. L. Zhu, and F. He (2004), “Partial oxidation of methane syngas over glow discharge plasma treated Ni-Fe/Al2O3 catalyst”, Catalysis Today, Vol. 89, pp. 183 - 191.
Whealton, J. H. and R. L. Graves (1995), “Exhaust remediation using non-thermal (plasma) aftertreatments: A review”, Proceedings of the 1995 Diesel Engine Emissions. Reductions Workshop, Vol. 23, LaJolla, CA.
Worth, W. F. (2000), “Reducing PFC emissions: A tech. update”, Future Fab International, Environmental/ Health an Safety, 57.
Xu, X. (1999), “Dynamics of high- and low-pressure plasma remediation”, Ph.D. Thesis, University of Illinois, Department of Electrical Engineering.
Zhu, Y. R., Z. H. Li, Y. H. Zhou, J. Lv, and H. T. Wang (2006), “Plasma treatment of Ni and Pt catalysts for partial oxidation of methane”, Reaction Kinetics and Catalysis Letters, Vol. 87, pp. 33 - 41.
? 游生任(2000),“以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討”,中央大學環境工程研究所論文,中央大學,中壢市。
? 李灝銘(2001),“以低溫電漿去除揮發性有機物之研究”,中央大學環境工程研究所論文,中央大學,中壢市。
? 呂榮峰(2001),”BaTiO3填充床墊將反應器破壞CF4之初步研究” ,國立中央大學環工所碩士論文,中央大學,中壢市。
? 吳關佑 (2002),“線管式與填充床式電漿反應器破壞SF6 之初步研究”,國立中央大學環工所碩士論文,中央大學,中壢市。
? 劉世尹(2008),” 半導體廠PFCs及VOCs廢氣排放處理之研究”, 國立中央大學環工所碩士論文,中央大學,中壢市。
? IPCC, (2007)
http://www.ipcc.ch/ipccreports/assessments-reports.htm
? 物質安全資料表-C3F8
http://www.boclh.com.tw/ALBUM/47_C3F8.pdf
? 行政院原子能委員會核能研究所, ”PFCs排放控制處理技術之對照表,”
http://www.iner.gov.tw/news/c-service/change/03.htm
? NIST(1):
http://webbook.nist.gov/cgi/cbook.cgi?ID=C76197&Units=SI&Mask=4#Thermo-Phase
(2)NIST(2):
http://webbook.nist.gov/cgi/cbook.cgi/10024-97-2-IR.jdx?JCAMP=C10024972&Index=1&Type=IR
(3)NIST(3):
http://webbook.nist.gov/cgi/cbook.cgi?Name=ozone&Units=SI&cIR=on#IR-Spec
指導教授 張木彬(Moo Been Chang) 審核日期 2009-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明