博碩士論文 953206010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:35.172.150.239
姓名 賴怡伶(Yi-ling Lai)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 含纖維素之生物吸附劑對重金屬吸附之研究
(Adsorption of Heavy Metal by Biosorbents Containing Cellulose)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統上已有許多物化學方法來移除溶液中之重金屬,然而工業廢水的多樣性,要得到較佳金屬離子去除效率是非常困難且成本很高。目前已有許多研究致力於發展低成本、可再利用之生物吸附劑來移除溶液中有害物質。果皮中含有纖維素、半纖維素、果膠等物質,纖維素中含有大量氫氧基,金屬離子可鍵結在這些官能基上達到移除重金屬離子之目的。
本研究主要為利用果皮上之纖維素如:橘子皮、香蕉皮及檸檬皮等,利用純化纖維素、果皮表面之酸鹼改質與固定化技術,製備多種含纖維素生物吸附劑,希望藉由生物吸附劑來吸附溶液Cu2+、Pb2+、Zn2+、Ni2+、Cd2+五種金屬。
實驗結果得知果皮經純化以及酸鹼改質後,吸附量有大幅提升趨勢。Carboxyl group含量愈多,對重金屬吸附愈好,顯示Carboxyl group多寡會影響吸附量。由FTIR圖譜可看出羧基與氫氧基之吸收波峰都很大,在進行吸附後,羧基與氫氧基之吸收波峰明顯削減,顯示果皮之纖維素可提供羧基與氫氧基,重金屬可鍵結在官能基所提供之未共用電子對上,達到移除重金屬目的。利用固定化技術所製備出顆粒狀吸附劑,吸附量並未明顯提升,顯示金屬只鍵結在褐藻膠之官能基上。
實驗結果顯示pH =5~6時,吸附效果最好。而果皮表面pHpzc值,也會影響吸附量之一。含纖維素吸附劑對Cu2+與Ni2+吸附效果很好,由於Cu2+與Ni2+可與大多數有機官能基所提供之未共用電子對進行鍵結,顯示對有機物具有很強親和性; Zn2+較易與含S、N、P有機物提供之未共用電子對鍵結,本研究製備之含纖維素吸附劑上主要提供氫氧基與羧基導致對Zn2+吸附量不佳。
摘要(英) Abstract
Traditionally, there are a lot of chemical and physical methods to remove heavy metal ions from industrial sewage. Due to the variety of industrial effluent, it is very difficult to get good removal efficiency with non-expensive. Presently, many studies devote to develop low cost and reusable biosorbent to get rid of harmful substance in the solution. Fruit peel principally consists of cellulose, hemi-cellulose, pectin substances and other low moleculear weight compounds. As the active binding sites for metals are supposed to be functional groups of hydroxyl and carboxyl in cellulose. Chemical modification has shown great promise in improving the cation exchange capacity due to the increase of functional groups.
This study use orange peel, banana peel and lemon peel as the raw materials to carry out some batch experiments. The experiments include extract cellulose from peels, effects of different chemical modification on peel surface and immobilized cellulose by using Ca-alginate to produce many kinds of biosorbents. The preparation of the biosorbents and its biosorption behaveiors of Cu2+, Pb2+, Zn2+, Ni2+ and Cd2+ were studied.
After peel surface chemical modification and extract cellulose from peels, the adsorption capacities of five heavy metal ions have increased compared to raw peels. The higher of carboxyl group content, the better adsorption capacities it is. It shows that the carboxyl group content will influence the adsorption capacity. The FTIR spectra showed that there are carboxyl groups and hydroxyl groups in biosorbents, which are able to react with heavy metal ions obviously in aqueous solution. It shows that cellulose provides carboxyl groups and hydroxyl groups, which have unshared pairs of electrons, and which can form coordinate linkages with metal ions. The adsorption capacities didn’t increase obviously by using immobilized biosorbents. It shows that heavy metal ions only coordinate with the function groups on Ca-alginate. The heavy metal ions adsorption are strictly pH dependent, and maximum uptake of heavy metal ions on different biosorbents are observed at pH range of 5.0-6.0. The pHpzc value of peel surface also influence the adsorption capacity. The Cu2+ and Ni2+ ions can coordinate with all active groups, so the biosorbents with cellulose have good adsorption capacity to Cu2+ and Ni2+. The Zn2+ coordinate preferentially with ligands containing N, P, and S donor atoms result in the biosorbent with cellulose don’t have good affinity with Zn2+.
Keywords: adsorption, cellulose, biosorbent, surface chemical modification
關鍵字(中) ★ 纖維素
★ 重金屬
★ 吸附
★ 表面改質
關鍵字(英) ★ cellulose
★ biosorbent
★ surface chemical modification
★ adsorption
論文目次 目 錄
第一章 前言 1
1-1研究緣起 1
1-2研究目的與內容 2
第二章 文獻回顧 4
2-1 重金屬介紹 4
2-1-1 重金屬特性介紹 5
2-1-2 傳統去除重金屬方法 7
2-2 生物對重金屬之吸附 9
2-3 以農業廢棄物吸附重金屬之文獻 11
2-4 農業廢棄物改質之吸附劑 15
2-4-1 使用稻穀(rice husk)改質 15
2-4-2 使用甜菜果肉(sugar beet pulp)改質 17
2-5 果皮內纖維素之吸附 19
2-6 含氧官能基之表面吸附劑 19
2-7吸附模式 22
2-7-1 吸附模式 23
第三章 實驗內容、設備、材料及方法 25
3-1實驗內容 25
3-2 實驗設備 27
3-3 實驗藥品材料 31
3-4 實驗方法 32
3-4-1果皮之纖維素萃取實驗 33
3-4-2高纖維素物質的固定化 35
3-4-3 果皮改質實驗 36
3-4-4 吸附實驗 37
3-4-5 pH之影響 37
第四章 結果與討論 38
4-1 果皮基本特性 38
4-1-1 果皮基本成分分析 38
4-1-1.1 BET比表面積與表面影像 40
4-1-1.2 果皮官能基鑑定 44
4-1-1.3 果皮表面電位及表面含氧官能基 46
4-1-2 果皮純化後基本特性 47
4-1-2.1 果皮純化前後表面影像之差異 47
4-1-2.2 果皮純化前後官能基之比較 50
4-1-2.3 果皮純化前後含氧官能基之比較 52
4-1-3 果皮改質後基本特性 54
4-1-3.1 果皮改質前後表面影像之差異 54
4-1-3.2 果皮改質前後官能基之比較 55
4-1-3.3 果皮改質前後含氧官能基含量之比較 60
4-2 pH值對吸附金屬離子之影響 62
4-3 含纖維素生物吸附劑吸附等溫線 66
4-3-1 未純化果皮等溫吸附模式 66
4-3-2 純化後果皮等溫吸附模式 70
4-3-3 檸檬皮(LP)改質後等溫吸附模式 77
4-4 含纖維素吸附劑吸附重金屬前後官能基之比較 83
4-4-1 OP、BP、LP吸附Cu2+前後官能基之比較 83
4-4-2 OPC、BPC、LPC吸附Cu2+前後官能基之比較 85
4-4-3 LPS、LPAO、LPAOS、LPCAOS吸附Cu2+前後官能基之比較 87
4-5 以固定化技術製備含纖維素吸附劑 88
4-5-1 固定化技術製備含纖維素吸附劑之特性 88
4-5-2 pH值對固定化含纖維素吸附劑之影響 89
4-5-3 固定化含纖維素吸附劑之等溫吸附模式 90
4-6 含纖維素吸附劑與其他吸附劑之比較 93
4-6-1 含纖維素吸附劑與活性碳之比較 93
4-6-2 含纖維素吸附劑與其他吸附劑之比較 95
第五章 結論與建議 96
5-1 結論 96
5-2 建議 98
圖 目 錄
圖2- 1 褐藻酸鈣之分子結構 (賴姻足, 2004) 10
圖2- 2 活性碳表面可能含有酸性官能基(Boehm, 1994) 20
圖2- 3 活性碳表面可能含有鹼性官能基 (Boehm, 1994) 21
圖3- 1 研究流程圖 26
圖4- 1 果皮各組成成分百分比長條圖 40
圖4- 2 Orange Peel (OP)表面影像(500x、5000x、10000x) 42
圖4- 3 Banana Peel(BP)表面影像(500x、5000x、10000x) 42
圖4- 4 Lemon Peel(LP)表面影像(5000x、10000x、50000x) 43
圖4- 5 Orange Peel (OP) FTIR圖譜 44
圖4- 6 Lemon Peel (LP)FTIR圖譜 45
圖4- 7 Banana Peel(BP)FTIR圖譜 45
圖4- 8 橘子皮純化前(OP,左)與純化後(OPC,右)之表面影像(10000x) 49
圖4- 9 香蕉皮純化前(BP,左)與純化後(BPC,右)之表面影像(10000x) 49
圖4-10 檸檬皮純化前(LP,左)與純化後(LPC,右)之表面影像(10000x) 49
圖4- 11 纖維素之結構式 50
圖4- 12 LPC(上)與LP(下)官能基之比較 51
圖4- 13 OPC(上)與OP(下)官能基之比較 51
圖4- 14 BPC(上)與(BP)官能基之比較 52
圖4- 15 LP(a)酸鹼改質後LPS(b)、LPAO(c)、LPAOS(d)、LPCAOS(e)之表面影像(10000x 56
圖4- 16 LPS(上)與LP(下)之FTIR圖譜 58
圖4- 17 LPAO(上)與LP(下)之FTIR圖譜 58
圖4- 18 LPAOS(上)與LP(下)之FTIR圖譜 59
圖4- 19 LPCAOS(上)與LPC(下)之FTIR圖譜 59
圖4- 20 pH值對未純化之果皮吸附Cu2+之影響 64
圖4- 21 pH值對純化後之果皮吸附Cu2+之影響 65
圖4- 22 pH值對改質後之果皮吸附Cu2+之影響 65
圖4-23 金屬Cu在不同pH值下之主要物種圖(Wang and Qin, 2005) 65
圖4- 24 OP、BP、LP對Cu2+之吸附等溫線圖 68
圖4- 25 OP、BP、LP對Pb2+之吸附等溫線圖 68
圖4- 26 OP、BP、LP對Zn2+之吸附等溫線圖 69
圖4- 27 OP、BP、LP對Ni2+之吸附等溫線圖 69
圖4- 28 OP、BP、LP對Cd2+之吸附等溫線圖 69
圖4- 29 OPC、BPC、LPC對Cu2+之吸附等溫線圖 73
圖4- 30 OPC、BPC、LPC對Pb2+之吸附等溫線圖 73
圖4- 31 OPC、BPC、LPC對Zn2+之吸附等溫線圖 74
圖4- 32 OPC、BPC、LPC對Ni2+之吸附等溫線圖 74
圖4- 33 OPC、BPC、LPC對Cd2+之吸附等溫線圖 75
圖4- 34 LPC於複合金屬濃(Cu2+與Zn2+)溶液中之吸附量 75
圖4- 35 LP改質後對Cu2+之等溫吸附線圖 79
圖4- 36 LP改質後對Pb2+之等溫吸附線圖 80
圖4- 37 LP改質後對Zn2+之等溫吸附線圖 80
圖4- 38 LP改質後對Ni2+之等溫吸附線圖 80
圖4- 39 LP改質後對Cd2+之等溫吸附線圖 81
圖4-40 OP吸附Cu後(Cu/OP,上)與OP(下)之FTIR比較圖譜 84
圖4-41 BP吸附Cu後(Cu/BP,上)與BP(下)之FTIR比較圖譜 84
圖4- 42 LP吸附Cu後(Cu/LP,上)與LP(下)之FTIR比較圖譜 84
圖4-43 OPC吸附Cu後(Cu/OPC,上)與OPC(下)之FTIR比較圖譜 86
圖4-44 BPC吸附Cu後(Cu/BPC,上)與BPC(下)之FTIR比較圖譜 86
圖4-45 LPC吸附Cu後(Cu/LPC,上)與LPC(下)之FTIR比較圖譜 86
圖4-46 LPS吸附Cu後(Cu/LPS,上)與LPS(下)之比較圖譜 87
圖4-47 LPAOS吸附Cu後(Cu/LPAOS,上)與LPAOS(下)比較圖譜 87
圖4-48 OPCCA(左)與BPCCA(右)之表面影像(500x) 88
圖4-49 pH值對固定化含纖維素吸附劑吸附Cu2+之影響 89
圖4-50 OPCCA、BPCCA對Cu2+之吸附等溫線圖 91
圖4-51 OPCCA、BPCCA對Pb2+之吸附等溫線圖 91
圖4-52 OPCCA、BPCCA對Zn2+之吸附等溫線圖 91
表 目 錄
表2- 1 重金屬之排放源及對人體之危害 4
表2- 2 移除廢水中重金屬方法之比較 8
表2- 3 以微生物吸附重金屬文獻整理 11
表2- 4 農業廢棄物吸附重金屬文獻整理 14
表2- 5 以農業廢棄物及活性碳吸附Cd(Ⅱ)吸附量之比較 16
表2- 6 天然甜菜(NP)經由皂化及酸鹼改質後之組成成分 18
表2- 7 天然甜菜經由皂化及酸鹼改質後官能基含量 18
表2- 8 物理吸附與化學吸附之比較 23
表3- 1 火焰式原子吸收光譜儀操作參數 29
表3- 2 不同波長下有機官能基 30
表4- 1 果皮去除色素、脂肪、果膠、蛋白質後之淨重 39
表4- 2 果皮色素、脂肪、果膠、蛋白質百分比 39
表4- 3 吸附劑比表面積與孔洞特性 41
表4- 4 OP、LP、BP表面主要官能基 45
表4- 5 OP、LP、BP之表面含氧官能基含量與pHpzc 47
表4- 6 表皮純化前後之含氧官能基含量與pHpzc之比較表 53
表4- 7 LPS與LPAOS官能基之比較表 57
表4- 8 LP改質前後含氧官能基含量與pHpzc之比較表 61
表4- 9 OP、BP、LP之Langmuir isotherm 吸附參數 70
表4- 10 OPC、BPC、LPC之Langmuir isotherm 吸附參數 76
表4- 11 果皮純化前後最大吸附量之比較 76
表4- 12 LP純化與改質前後吸附量之比較表 81
表4-13 LPS、LPAO、LPAOS、LPCAOS之Langmuir吸附參數表 82
表4-14 OPCCA、BPCCA對Cu2+、Pb2+、Zn2+之最大吸附量 92
表4-15 含纖維素吸附劑與活性碳最大吸附量之比較表 94
表4-16 含纖維素吸附劑與其他吸附劑對Cu2+最大吸附量之比較表 95
參考文獻 1. Abdelrahim, K.A.; Ramaswamy, H.S., 1995. High temperature/pressure rheology of carboxymethyl cellulose(CMC). Food Research International 28, 285-290
2. Ahrland, S.; Chatt, j.; Davies, N. R., 1958. Chem. Soc. Review 12, 265
3. Ajmal, M.; Rao, R.A.K.; Ahmad, R.; Ahmad, J., 2000. Adsorption studies on Citrus reticulate (fruit peel of orange): removal and recovery of Ni from electroplateing wastewater. Journal of Hazardous Material 79, 117-131
4. Aksu, Z.; İşoğlu, İ. A., 2005. Removal of copper(Ⅱ) ions from aqueous soluteion by biosorption onto agricultural waste sugar beet pulp. Process Biochemistry 40, 3031-3044
5. Annadurai, G.; Juang, R.S.; Lee, D.J., 2002. Adsorption of heavy metals from water using banana and orange peels. World Journal Microbiology and Biotechnology 47, 185-190
6. Arıca M. Y.; Arpa Ç.; Ergene A.; Bayramog˘lu G.; Genç Ö., 2003. Ca-alginate as a support for Pb(Ⅱ)and Zn(Ⅱ)biosorption with immobilized Phanerochaete chrysosporium. Carbohydrate Polymers 52, 167-174
7. Boehm, H. P., 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759-769
8. Charpentier, D.; Mocanu, G.; Carpov, A.; Chapelle, S.; Merle, L.; Muller, G., 1997. New hydrophobically modified carboxymethyl cellulose derivatives. Carbohydrate Polymer 33, 177-186
9. Davis, T.A.; Volesky, B.; Mucci, A., 2003. A review of the biochemistry of heavy metal biosorption by browm algae. Water Res. 37, 4311-4330
10. Denizil, A.; Say, R.; Testereci, H.N.; Arica, M.Y., 1999. Procein blue MX-3G-attached-poly(HEMA) membrane for cupper, arsenic, cadmium and mercury adsorption. Sep. Sci Technol. 34, 2369-2381
11. Frurest, E.; Volesky, B., 1997. Alginate properties and heavy metal biosorption by marine algae. Appl. Biochem. Biotechnol 67, 215-226
12. Gaballah, I.; Goy, D.; Allain, E.; Kilbertus, G.; Thauront, J., 1997. Recovery of copper through decontaminateon of synthetic solutions using modified barks. Met. Metall. Trans. B28, 13-23
13. Grau, J.M.; Bisang, J.M., 1995. Removal and recovery of mercury from chloride solutions by contact deposition on iron felt. J. chem. Technol. Biotechnol. 62, 153-158
14. Hafez, N.; Abdel-Razek, A.S.; Hafez, M.B., 1997. Accumulation of some heavy metals on Aspergillus flavus. J. Chem. Technol. Biotechnol. 68, 19-22
15. Ho, Y.-S., 2003. Removal of copper ions from aqueous solution by tree fern. Water Res. 37, 2323-2330
16. Irving H. M. N. H.; Williams R. J. P., 1948. Nature 162, 746
17. Jianlong, W.; Horan, N.; Stentiford, E.; Yi, Q., 2000. The radial distribution and bioactivity of Pseudomonas sp immobilized in calcium alginate gel beads. Process Biochemistry 35, 465-469
18. Kaçar, Y.; Arpa, Ç.; Tan, S.; Denizli, A.; Genç, Ö.; Arıca, M.Y., 2002. Biosorption of Hg(Ⅱ)and Cd(Ⅱ)from aqueous solututions: comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium. Process Biochemistry 37, 601-610
19. Kapoor, A.; Viraraghavan, T., 1997. Heavy metal biosorption sites in Aspergillus niger. Biores. Technol. 24, 433-439
20. Kratochvil, D.; Volesky, B., 1998. Advances in the biosorption of heavy metals. TIBTECH 16, 291-300
21. Krishnani, K. K.; Meng X.; Christodoulate, C.; Boddu, V. M., 2007. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of Hazardous Materials.
22. Kumar, U.; Bandyopadhyay, M., 2006. Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour. Technol. 97, 104-109
23. Laszlo, J. A.; Dintzis F. R., 1994. Multicomponent biosorption in fixed beds. Water Research 34, 3186-3196
24. Leyva-Ramos, R.; Bernal-Jacome, L.A.; Acosta-Rodrigues, I.; 2005. Adsorption of cadmium(Ⅱ) from aqueous solution on natural and oxidized corncob. Sep. Purif. Technol. 45, 41-49
25. Leusch, A.; Holan, Z. R.; Volesky, B., 1995. Biosorption of heavy metals (Cd, Cu, Ni, Pb, and Zn) by chemically-reinforced biomass of marine algae. Journal of Chemical and Biotechnology 62, 279-288
26. Li, X.; Tang, Y.; Xuan, Z.; Liu, Y.; Luo, F., 2007. Study on the preparation of orange cellulose adsorbent and biosorption of Cd2+ from aqueous solution. Separation and Purfication Technology 55, 69-75
27. Lo, W.; Chua, H.; Lam, K.H.; Bi, S.P., 2002. A compareative investingation on the biosorption of lead by filamentous fungal biomass. Chemosphere 47, 1081-1085
28. Marshall, W. E.; Johns, M. M., 1996. Agricultural by-products as metal adsorbents: sorption properties and resistance to mechanical abrasion. J. Chem. Technol. Biotechnol. 66, 192-168
29. Marshall, W. E.; Wartelle, L. H.; Boler, D. E.; Toles, C. A., 2000. Metal ion adsorption by soybean hulls modified with citric acid: a comparative study. Carbon 9, 1407-1414
30. Nakajima, A.; Salaguchi, T., 1990. Recovery and removal of uranium by using plant wastes. Biomass 21, 55-63
31. Piyush, K. P.; Yashu, V.; Shweta, C.; Madhurima, P.; K.C., 2007. Biosorptive removal of cadmium from contaminated groundwater and Industrial effluents. Bioresource Technology.
32. Puranik, P. R., Paknikar, 1999. Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: characterization studies. Biotechnol. Prog. 15, 228-237
33. Rahnan, I. A.; Ismail, J.; 1993. Preparation and characterization of spherical gel from a low-cost material. J. Mater. Chem. 3, 931-934
34. Reed, B. E., 1998. Wastewater treatment. In: Heavy Metals. In Meyers, R.A. (Ed.), Encyclopedia of Environmental Analysis and Remediation 4, 5220-5248
35. Reddad, Z.; Gérente, C.; Andrès, Y.; Ralet, M. C.; Thibault, J. F.; Cloirec, P. L., 2002. Ni(Ⅱ) and Cu(Ⅱ) binding properties of native and modified sugar beet pulp. Carbohydrate Polymers 49, 23-31
36. Rombouts, F. M., Thibault, J. –F., 1986. Feruloylated pectic substances from sugar beet pulp. Carbohydrate Research 154, 177
37. Ruthven, D. M., 1984. Principles of Adsorption and Adsorption Process.
38. Saygideger, S.; Gulnaz, O.; Istifli, E.S.; Yuxel, N., 2005. Adsorption of Cd(Ⅱ), Cu(Ⅱ) and Ni(Ⅱ) ions by Lemna minor L effect of physicochemical environment, J. Hazard. Mater. 126, 96-104
39. Saeed, A.; Akhter, M. W.; Iqbal, M., 2005. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology 45, 25-31
40. Saglam, A.; Yalçinkaya, Y.; Denizli, A.; Arica, M.Y.; Genç, ö.; Bektas S., 2002. Biosorption of mercury by carboxymethylcellulose and immobilized Phanerochaete chrysosporium. Microchemical Journal 71, 73-81
41. Saglam, N.; Say, R.; Denizli, A.; Patir, S.; Arica, M.Y., 1999. Biosorption of inorganic mercury and alkylmercury species on P. chrysosporium mycelium. Process. Biochem. 34, 725-730
42. Say, R.; Denizli, A.; Arıca, M. Y., 2001. Biosorption of cadmium(Ⅱ), lead(Ⅱ)and copper(Ⅱ)with the filamentous fungus Phanerochaete chrysosporium. Bioresource Technology 76, 67-70
43. Tarley, C. R. T.; Ferreira, S. L. C.; Arruds, M. A. Z., 2004. Use of modified rice husks as a natural solid adsorbent of trace metals: characterization and development of an on-line preconcentration system for cadmium and lead determination by FAAS. Microchem. J. 77, 163-175
44. Vijayaraghavan, K.; Jegan, J.; Palanivelu, K.; Velan, M., 2004. Removal of mickel(Ⅱ) ions from aqueous soluteon using crab shell particles in a packed bed up-flow column. J. Hazard. Mater. B113, 223-230
45. Vijayaraghavan, K.; Palanivelu, K.; Velan, M., 2006. Biosorption of copper(Ⅱ) and cobalt(Ⅱ) from aqueous solution by crab shell particles. Bioresource Technology 97, 1411-1419
46. Volesky, B.; Holan, Z. R., 1995. Biosorption of heavy metals Biotechnol.Prog. 11, 235-250
47. Volesky, B., 1990. Biosorption of Heavy Metals. CRC Press, Boca Raton.
48. Wartelle, L. H.; Marshall, W. E., 2000. Citric acid modified agricultural by-products as copper ion adsorbents. Advances in Environmental Research 4, 1-7
49. Wang, X.-s.; Qin, Y., 2005. Equilibrium sorption isotherms for of Cu2+ on rice bran. Process Biochemistry 40, 677-680
50. Xiaomin, L.; Yanru, T.; Zhexian, X.; Yinghui, L.; Fang, L., 2007. Study on the preparation of orange peel cellulose adsorbents and biosorption of Cd2+ from aqueous solution. Separation and Purification Technology 55, 69-75
51. Zhou, J.L.; Kiff, R.J., 1991. The uptake of copper from aqueous soluteuon by immobilized fungal biomass. J. Chem. Technol. Biotechnol. 52, 317-330
52. 歐陽嶠暉,2004,下水道工程學,長松文化興業股份有限公司
53. 賴姻足,2004,以固定化綠膿桿菌球移除溶液中之重金屬,國立雲林科技大學化學工程系碩士論文
指導教授 李俊福(Jiunn-fwu Lee) 審核日期 2008-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明