博碩士論文 953206011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.15.6.77
姓名 高國源(Kuo-Yuen Kao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 廢棄物衍生鋁熱熔融劑處理鉻污泥
(Waste derived thermite melting preparation to dispose of chromium sludge)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究
★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響★ 下水污泥焚化灰渣燒成輕質骨材特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用電鍍工業副產物鉻電鍍污泥、鉻廢水污泥及機械工廠邊料鋁屑,配置成廢棄物鋁熱反應熔融劑,鋁熱反應可產生高溫將三種原料共同熔融,回收鉛金屬及鐵鉻合金,利用鉻廢水污泥含高濃度二氧化矽之特性作為玻璃形成劑,改善熔渣品質,提高分離效率。
研究結果顯示,前處理溫度500℃時可使鉻電鍍污泥中氧化鉛、氧化鉻純度相對於100℃時,分別上升19%、14%,而結晶峰面積上升40%。將鉻電鍍污泥混合足量金屬鋁,進行鋁熱反應時,前處理溫度500℃時的DTA放熱鋒面積,較熱處理溫度100℃時增加59.5%。
鉻電鍍污泥鋁熱處理最佳配比實驗中,鉻電鍍污泥與鋁屑以重量百分比4.53:1(鉻電鍍污泥80克和鋁屑17.64克)混合時,有最大放熱溫度1851℃,各組配比皆僅回收熔渣(含金屬)及飛灰,並無法回收金屬錠的部份。
鉻污泥鋁熱處理—鉛、鉻回收實驗,鉻電鍍污泥:鋁屑:鉻廢水污泥=4.53:1:4.08 (鉻電鍍污泥80克、鋁屑17.64克和鉻廢水污泥72克),能改善鋁熱反應放熱過於劇烈之特性,幫助鉛金屬錠與熔渣分離並改善熔渣品質,同時可熱處理鉻污泥,達到廢棄物無毒化、資源化之雙重功能。將回收鉛後的熔渣取20g研磨,混合3-5g的氧化鐵及足量鋁屑,反應可回收鐵鉻合金、鐵合金兩種金屬錠。
以金屬回收率決定本研究的最佳配比,則最佳配比回收的鉛金屬佔總鉛的75%純度為95%;鐵鉻合金純度,鐵為32%、鉻為50%;鐵合金純度,鐵為88%;處理後的鉻污泥熔渣呈玻璃狀,毒性特性溶出合乎法規標準,化學抗蝕性皆低於0.2%,耐候性試驗於第八次循環方有重量損失。綜合上述結果,鋁熱熔融處理可將鉻污泥中的金屬回收同時將剩餘熔渣無害化且所得熔渣具有材料化之潛力。
摘要(英) It is beneficial to recover Cr and Pb from chromium plating sludge (referred to as CrPS) since it is primarily composed of PbCrO4 and PbO. This study investigated a novel technology for recovering chromium and lead from CrPS, by using thermite reaction between chromium oxide and aluminum (i.e., waste, parings and scrap). Sludge from Chromium wastewater treatment process (referred to as CrWS) , mainly composing of chromium oxide (Cr2O3) and silicon dioxide (SiO2), was also added in the recovering process to function as a glass-former that facilitate the separation of metal and slag and improves the quality of slag. In this study, the recovery process was divided into 3 stages: refinement of the CrPS, recovery of lead form the CrPS, and again, recovery of chromium as Cr-Fe alloy from the resultant slag.
During the refinement of the starting CrPS, the sludge was heated at a temperature ranging from 100℃ to 600℃. It was found that the major species identified as PbCrO4, PbO, Cr3O4, and CrO were not changed; the total concentration of crystal phases, however, increased at 500℃. This suggests that the loss on ignition (i.e., 8.53 w/w% for CrPS) and the oxidized degree of thermit oxides might affect. The thermite reaction between chromium oxide and aluminum may proceed in a one-step path: CrO3+2Al→Al2O3+Cr, or in a two-step path: 2CrO3+2Al→Cr2O3+Al2O3 and CrO3+2Al→2Cr+Al2O3. The PbCrO4 in the starting CrPS might decompose into PbO and CrO3 when heated, which led to the activation of thermite reactions between PbO and Al, as well as between CrO3 and Al. However, the species, the oxidized degree, the reaction path, and the stoichiometry of Al were not clear. Therefore, the actual stoichiometry between CrPS and Al has to be determined experimentally by properly assuming what the thermit oxides are in the starting material. Several mixes of CrPS and Al, with Al in excess of its stoichiometry were tested.
Thus, the highest reaction temperature developed would then determine the optimum mix of CrPS and Al, reflecting a mix under the balanced effects of factors such as species, oxidized degree, reaction path, impurities, non- reactive oxides, Al stoichiometry, and heat loss from the reactor wall. In this study, a mix ratio of CrPS:Al=4.53:1 showed the optimum mix for the CrPs and Al thermite. However, in this case, the recovered alloy and slag were not separated.
In the recovering of Pb by thermite reactions, it was found that one kg of the above optimum mix, when added with 0.72 kg of CrWS, would result in a maximum recovery of lead alloy (18 w/w%), with 95.61% of Pb purity. The Pb recovery rate reached 76.79% as compared to initial Pb in the inputs. The 69 % of slag by weight of inputs was also recovered that retained most of the chromium oxides.
In the subsequent recovery of chromium as Cr-Fe alloy, the above slag was further pulverized and mixed with Fe2O3-Al thermite with proper amount of Al stoichiometry. Optimum recovery of Cr-Fe alloy was achieved with Cr:Fe ranging from 4.61:1 to 1.55:1. Chromium recovery rate reached 80.78% as compared to the Cr input at second phase. This process also recovered 62.3 w/w% of slag compared to the inputs at second phase. The recovered slag was vitrified and stable.
The results of this work suggest that to recover Pb and Cr from CrPS and CrWS using thermite reactions is a promising technology not only energy conservative but also recycling-beneficial.
關鍵字(中) ★ 資源化
★ 鉻回收
★ 鉛回收
★ 熔融
★ 鋁熱反應
關鍵字(英) ★ resources
★ chromium recycling
★ lead recycling
★ multing
★ thermite reaction
論文目次 第一章 前言......................................................................................................................... 1
1-1 研究緣起................................................................................................................ 1
1-2 研究目的與內容..................................................................................................... 2
第二章 文獻回顧................................................................................................................. 3
2-1 鉻污泥產出現況及資源化技術.............................................................................. 3
2-1-1 鉻污泥來源................................................................................................. 3
2-1-2 資源化技術................................................................................................. 5
2-2 鋁熱反應................................................................................................................ 8
2-2-1 鋁熱反應熱力學.......................................................................................... 8
2-2-2 鋁熱反應影響因素.................................................................................... 13
2-2-3 鋁熱反應於環工領域之運用.................................................................... 18
2-3 鉻污泥鋁熱熔融技術........................................................................................... 22
2-3-1 鉻污泥鋁熱熔融技術原理........................................................................ 22
2-3-2 鋁熱熔融處理鉻污泥操作因素................................................................. 24
2-3-3 鋁熱熔融處理的效應................................................................................ 28
2-4 鉻污泥鋁熱熔融處理之問題............................................................................... 31
2-4-1 鋁熱熔融劑成份........................................................................................ 31
2-4-2 金屬分離效果............................................................................................ 32
2-4-3 回收產物品質............................................................................................ 32
第三章 實驗材料與方法.................................................................................................... 34
3-1 研究架構.............................................................................................................. 34
3-2 實驗材料與設備................................................................................................... 36
3-2-1 實驗材料................................................................................................... 36
3-2-2 實驗設備................................................................................................... 37
3-3 實驗條件配置...................................................................................................... 39
3-3-1 原物料基本特性分析................................................................................ 39
3-3-2 純化處理實驗條件配置............................................................................ 39
3-3-3 鉻電鍍污泥鋁熱處理最佳配比實驗之實驗配置...................................... 40
3-3-4 鉻污泥鋁熱處理-鉛、鉻回收之實驗配置................................................ 43
3-4 實驗分析.............................................................................................................. 45
3-4-1 分析儀器................................................................................................... 45
3-4-2 分析方法................................................................................................... 45
第四章 結果與討論............................................................................................................ 49
4-1 原物料基本性質................................................................................................... 49
4-1-1 原物料基本物化性質................................................................................ 49
4-1-2 原物料粒徑分佈........................................................................................ 50
4-1-3 原物料化學組成........................................................................................ 53
4-1-4 原物料熱重熱差分析-熱行為................................................................... 55
4-1-5 原物料重金屬毒性特性溶出試驗............................................................. 59
4-1-6 原物料掃瞄式電子顯微鏡與X 光繞射分析............................................. 60
4-2 純化處理實驗...................................................................................................... 62
4-2-1 純化處理鉻電鍍污泥之成分變化............................................................. 62
4-2-2 純化處理鉻電鍍污泥之結晶物種探討..................................................... 64
4-2-3 純化處理鉻電鍍污泥之鋁熱反應變化..................................................... 66
4-2-4 小結........................................................................................................... 68
4-3 鉻電鍍污泥鋁熱處理最佳配比實驗.................................................................... 69
4-3-1 配比實驗之反應特性變化........................................................................ 69
4-3-2 配比實驗之熱重熱差分析........................................................................ 72
4-3-3 配比實驗之熔渣(含金屬)物化特性.......................................................... 74
4-3-4 配比實驗之熔融飛灰之化學特性............................................................. 83
4-3-5 配比實驗之主要元素分佈........................................................................ 84
4-3-6 小結........................................................................................................... 88
4-4 鉻污泥鋁熱處理-鉛、鉻回收實驗...................................................................... 89
4-4-1 鉻廢水污泥添加量與反應特性之變化-鉛回收........................................ 89
4-4-2 鉻污泥鉛回收實驗之熱重熱差分析......................................................... 92
4-4-3 鉻污泥鉛回收實驗之熔渣特性................................................................. 95
4-4-4 鉻污泥鉛回收實驗之熔融飛灰特性....................................................... 104
4-4-5 鉻污泥鉛回收實驗之金屬錠特性........................................................... 105
4-4-6 鉻污泥鉛回收實驗之主要元素分佈....................................................... 106
4-4-7 鉻污泥熔渣鐵鉻合金回收實驗............................................................... 109
4-4-8 小結......................................................................................................... 118
第五章 結論與建議.......................................................................................................... 120
5-1 結論.................................................................................................................. 120
5-2 建議.................................................................................................................. 122
第六章 參考文獻........................................................................................................ 123
參考文獻 1.Ashitani, Tatsuya, Tomoshige, Ryuichi, Oyadomari,
Masafumi, Ueno, Tomoko,and Sakai, Kokki,”Synthesis of
titanium carbide from woody materials by self-
propagating high temperature synthesis”,Journal of the
Ceramic Society of Japan, Vol: 110,No.1283, pp632-
638,2002.
2.Balakir, E.A., Bushuev, YU.G., Bareskov, N.A., Kosyakin,
A.E., Kudryavtsev, YU.V., Fedorova, O.N.,ibid.vol
11,pp36,1975.
3.Barinova, T.V., Borovinskaya, I.P., Ratnikov, V.I.,
Ignatjeva, T.I., and Zakorzhevsky, V.V., ”SHS of
Mineral-Like Ceramics for Consolidation of Radioactive
Wastes”,Proceedings of the Fifth International
Symposium on Self-Propagating High Temperature Synthesis
SHS-99 , Moscow, Russia, 1999.
4.Cincotti, A., Orru, R., Pisu, M.,and Cao, G., ”Self-
Propagating Reactions for Environmental Protection:
Reactor Engineering Aspects”,Ind. Eng. Chem. Res. ,Vol:
40, Issue:23,pp5291-5299 ,2001.
5.Chernenko, E.V., Afanaseva, L.F., Lebedeva, V.A.,
Rozeband, V.I., ibid, 24, pp639, 1988
6.Chen. Weiwu. , Wang. Peiling. , Chen. Dianying. , Zhang.
Baolin. , Jiang. Jiuxin. , Cheng .Yibing., and
Yan .Dongsheng., ”Synthesis of (Ca,Mg)--sialon from
slag by self-propagating high-temperature
synthesis”,Journal of Materials Chemistry , Vol 12 ,
No.4 , pp1199-1202,2002.
7.Dubrovin, A.S., Kuznetsov, Slepova, L.V.,Kuznetsov,
V.L., ”Combust. Explos. Shock Waves”,Engl. Transl. ,
Vol.6, 1970.
8.Ecke, H., Sakanakura, H., Matsuto, T., Tanaka, N.,
Lagerkvist, A., 2000.State-of-the-art treatment
processes for municipal solid waste incineration
residues in Japan. Waste Management and Research 18, 41–
51.
9.Giovanni Tiravanti,Domenico Petruzzelli ,Roverto
Passino,.Low and non waste technologies for metals
recovery by reactive polymers.,Waste Management Vol. 16
No.7,pp.597~605,1996.
10.G. Macchi,M. Pagano,M. Pettine,M. Santori,G.
Tiravanti,A bench study on chromium recovery from
tannery sludge.,Wat. Res. Vol.25 No. 8,pp.
1019~1026,1991.
11.Hoon-Ha Lee,Jin-Gun Sohn,Jae-Young Lee,Dae-Young
Kim,Fabrication of Cr2O3 powder from waste MgO-Cr
refractory.,The 6th.
12.International Symposium on East Asian Resources
RecyclingTechnology Proceedings ,pp.357~361,2001.
13.Jiang Jiuxin , Wang Peiling , Chen Weiwu , Zhuang
Hanrui , Cheng Yibing, ,and Yan Dongsheng, ”Phase
assemblages of (Ca,Mg)-α-sialon ceramics derived from an
α-sialon powder prepared by SHS”,Journal of Europcan
Ceramic Society,Vol:23,pp2342-2349,2003.
14.Kubaschewski, O., Alcock, C.B., ”Metallurgical
Thermochemistry”, Pergamom Press, New York, 1979.
15.Kubashevski, O., Alcock, C.B., and Spencer, P.J.
Materials Thermochemistry,Pergamon Press, 1993.
16.Kallio, M., Ruuskanen, P., Maki, J., Poylio, E.,and
Lahteenmaki, S., ”Use of the aluminothermic reaction
in the treatment of steel industry by-
products”,Journal of Materials Synthesis and
Processing, Vol :8, No: 2, pp87-92, 2000.
17.L. Dur˜aes, J. Campos, A. Portugal, Propell. Explos.
Pyrot. 31 (2006)42–49.
18.L. Dur˜aes, P. Brito, J. Campos, A. Portugal, in:W.
Marquardt, C. Pantelides(Eds.), Proceedings of the 16th
European Symposium on Computer Aided Process
Engineering and Proceedings of the Ninth International
Symposium on Process Systems Engineering, 21A of Comp.
Aided Chem. Eng.,Elsevier, Amsterdam, 2006, pp. 365–
370.
19.Lu, Xin , Guo, Zhimeng , Luo, Shanggeng,, Lin, Tao,
Yin, Sheng, Yang, Jianwen, ”Self-propagating high
temperature synthesis of radioactive waste
immobilization”,Journal of the Chinese Ceramic
Society, Vol: 31,No. 2,pp205-208, 2003.
20.M. Amer,I. A. Ibrahim,.Leaching of a low grade
Egyptian78 chromite ore.,Hydrometallurgy
No.43,pp307~316,1996.
21.Merzhanov, A.G., ”History and recent developments in
SHS”,Ceramics International, Vol: 21, Issue: 5,pp371-
379, 1995.
22.Mei J,Halldearn R D,Xia.P.Scriptn Materinlin, 1999,41:
541~548.
23.Murakami, T., Ishida, T., Sasabe K., Sasaki, K. and
Harada, S.,
”Characteristics of Melting Process for Sewage
Sludge”, Water Science and Technology, 23(10/12), 2019-
2028, 1991a.
24.Murakami, T., Sasabe, K., and Kawashima, T., ”
Estimation of Energy Saving for Melting Process on
Sewage Sludge”, Water Science and Technology, 23
(10/12),pp. 2011-2018, 1991b.
25.Merzhanov, A.G.,Yukhvid, V.L., Borovinskaya, I.P.,Dokl.
Acad. Sci. USSR, Chem, vol.255, pp503, 1980.
26.Marvin J. Udy,”Chromium”,American Chemical Society
monograph series,1956
27.Muthuraman M., Arul Dhas N., and Patli K.C., ”
Combustion synthesis of oxide material for nuclear
waste immobilization”,Bull, Sci, 17,pp977,1994.
28.Matsunaga and Masahiro, ”Method and apparatus for
treating a waste substance using a thermit
reaction”,U.S. patent,No.6225519,Appl.No.211306,2001.
29.Orr?, Roberto, Sannia, Mariella ,Cincotti, Alberto,
Cao ,Giacomo, ”Treatment and recycling of zinc
hydrometallurgical wastes by self-propagating
reactions”,Chemical Engineering Science, Vol: 54,
Issue: 15-16 ,pp3053-3061, 1999.
30.Orr?, Roberto, Sannia, Mariella ,Cincotti, Alberto,
Cao ,Giacomo, ”On the Mechanism of Structure and
Product Formation in Self-Propagating Thermite
Reactions”International Journal of Self-Propagating
High-Temperature Synthesis , Vol.6, Number.1, 1997.
31.Orru R,Sim.ncini B,Virdis R E,et n1.Chem
En9.C.m.,1998,163:23~35.
32.Orr?, Roberto, Sannia, Mariella ,Cincotti, Alberto,
Cao ,Giacomo,”Treatment and recycling of zinc
hydrometallurgical wastes by
self-propagating reactions”,Chemical Engineering
Science, Vol: 54, Issue: 15-16 ,pp3053-3061, 1999.
33.Ohnishi, T. ,Harada, H., Kume, S., Nakagawa, H.,
Miyatake, K.,and Miyanami, K., ”Metal recovery from
electroplating sludge by using thermit reaction with
aluminum in aluminum dross wastes”,Journal of Japan
Institute of Light Metals, Vol:51, No. 3,pp188-194,2001.
34.Pashkeev, I. Yu. , Senin, A.V., Drozdov, V.V.,
Studenikin, G.V.,and Dzekun, E.G. , ”High-temperature
synthesis of metal-ceramic matrices for immobilizing
high-level radioactive wastes”, Atomnaya Energiya,
Vol: 83,No. 6,pp437-446,1997.
35.Pashkeev, I. Yu. , Levakov, E.V., Gavnilov, P.I.,
Glagovskij, E.M.,and Kuprin, A.V. , ”Self-propagating
high temperature synthesis of zirkonolite-base
composite matrials for nuclear wastes immobilization”,
Fizikai Khimiya Obrabotki Materualov, No. 5,pp58-63,
2001.
36.Pellant ,Chris著,朱靜江譯, ”Rock and Minerals”,1st
Ed,7th Printing,Owl Publishing House,1999.
37.Renard D. R.,.Metal recovery from leached plating
sludge.,Plating and Surface Finishing,pp.46~48, 1987.
38.Spector , M.L. , Suriani ,Ernesto and Stukenbroeker, G.
L., ”Thermite Process for Fixation of High Level
Radioactive Wastes”,I&EC Process Design and
Development,Vol:7, No.1,pp117-122,1968.
39.Tomoshige, R., Ashitani, T., Yatsukawa, H., Nagase, R.,
Kato, A., and Sakai, K., ”Synthesis of Ceramic
Compounds Utilizing Woody Waste Materials and Rice
Husk”,Materials Science Forum, Vol: 437-438,pp411-
414,2003.
40.Tanaka, T. et al.,”Demonstration of a multi-purpose
incineration melter system”,ANS International Topical
Meeting, 1986.
41.Vogel, W., “Chemistry of glass, ” Am. Ceram Soc.,
(1985), 38.
42.Xanthopoulou ,Galina, and Vekinis, George, ”An
overview of some environmental applications of self-
propagating high-temperature synthesis”, Advances in
Environmental Research, Vol. 5, Issue: 2, pp.117-128,
2001.
43.株式會社,「自燃性?卻灰製造方法」,網址:
http://www.t3.rim.or.jp/~yo01-pat/04801401.html,網頁更新
日期: 1996年6月28日,網頁擷取日期:2003年7月1日。
44.株式會社(OSU),「燃燒合成」,網址:
http://www.osu-japan.com/OSUFiles/Nenshogosei.html,網頁
擷取日期:2004年4月13日。
45.村上定瞭與竹內正美,”Ash Melting and Solidification
with Used Aluminium Cans”,由宇部工業高等?門學校物質工
學科,網址:http://www.ube-
k.ac.jp/~volnteer/MT_Lab/photo_gbg/melt.htm,網頁更新日
期: 1997年3月22日,網頁擷取日期:2003年7月1日。
46.薦田俊策,「?棄物?理技術 98024
號」,由 環境科? 評?技術部,網址:
http://www2.tri.pref.osaka.jp/servlet/TechnicalSheet
type=Download&pid=98024,網頁更新日期:1998年10月14日網
頁擷取日期:2003年7月1日。
47.村上忠弘與石田貴榮,「污泥熔融係指標檢討」,下水道
協會誌,Vol. 26,No. 300,1989。
48.村上忠弘、石田貴榮、鈴木和美、角田幸二,「污泥熔係指
標檢討」,下水道協會誌,Vol. 2,No.300,pp.32-46,
1985。
49.王雙喜,梁開明,張獻輝,顧守仁無機材料學報,vol.17,
No.5,2002。
50.朱志弘,「Thermite反應熔融處理都市垃圾焚化飛灰之研究」,
國立中央大學環境工程研究所,碩士論文,2004。
51.李嘉宜,.電鍍污泥回收鉻金屬之研究.,國立臺灣大學環境工程
研究所,碩士論文,1995。
52.李宗哲,「利用廢矽晶片與焦炭製備碳化矽之精密陶瓷及利用電
弧法與加熱法製備奈米管材的探討」,國立中正大學化學工程研
究所碩士論文,2002。
53.呂慶慧,王壬,楊維鈞,.回收電鍍污泥中有價金屬之研究.,第
十屆棄物處理技術研討會論文集,1995。
54.呂學俊,「礦物科學」,中國文化大學出版部,第293 頁,
1988。
55.呂俊芳,延安大學學報:自然科學版,第3期,第19卷,2000。
56.何春松,「灰渣熔融技術之發展」,國立台灣大學台大工程學
刊,第84期,2002。
57.阮江溥,「廢棄物衍生Thermite熔融劑之研究」,國立中央大學
環境工程研究所,碩士論文,2005。
58.林江財,「熱電偶」,收錄於汪建民主編,陶瓷技術手冊
(上),頁116,1994。
59.周俊志,「廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回
收之研究」,國立中央大學環境工程研究所,碩士論文,2007。
60.許樹恩,陳崇一與陳新仁,「自發反應合成」,陶瓷技術手冊
(上),頁181-187,1994。
61.倪文、李建平、方興、陳德平及陳那那,「礦物材料學導論」,
科學出版社,頁33-34,1998,北京。
62.郭淑玲,皮革廢棄物焚化過程中添加物對Cr 回收之影響,國立
臺灣大學環境工程研究所,碩士論文,2000。
63.張祖恩、魏玉麟、王鴻博、許琦與黃沐域,「焚化灰渣物化特性
及溶出毒性之調查研究」,第十四屆廢棄物處理技術研討會論文
集,1999。
64.張毓寬,「鉻污泥資源化基礎研究」,國立成功大學資源工程研
究所,碩士論文,2002。
65.張旭彰,「都市垃圾焚化灰渣熔融處理操作特性之研究」,碩士
論文,國立中央大學環境工程學研究所,中壢(1991)。
66.黃心亮,「鉻鋅電鍍污泥熱處理之研究」,東海大學環境科學
系,碩士論文,2000。
67.黃明政、鄭大偉、曾錦清、邱文通、楊昇府(2005),焚化灰渣熔
融製成黑色微晶材料之資源化研究,第二十屆廢棄物處理技術研
討會,桃園中壢。
68.詹炯淵,「垃圾焚化飛灰管理對策之研究」,國立台灣大學環境
工程學研所,碩士論文 (2001)。
69.楊敏鑫,「廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制
及重金屬移行之研究」,國立中央大學環境工程研究所,碩士論
文,2006。
70.廖錦聰、馬文松,「鉻污泥無害化處理」,中華民國專利,專利
證號:044928 ,民國80 年2 月1 日公告。
71.鍾宇翔,「廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研
究」,國立中央大學環境工程研究所,碩士論文,2006。
指導教授 王鯤生 審核日期 2009-1-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明