博碩士論文 953206014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.81.28.94
姓名 吳如雅(Ju-ya Wu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 非接觸式光學監測混凝系統技術之發展
(Development of non-contact optical monitoring technology for coagulation process)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
★ 水足跡盤查分析與節水策略-以某印刷電路板軟板廠為例★ 以超音波法改善快濾池空氣閉塞之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 混凝是水處理中固液分離的重要程序之一,而在混凝過程中存在著許多因子影響混凝的好壞,其中混凝劑的加藥量是最難控制的一個,目前是由瓶杯實驗及操作經驗來決定加藥量,常有過量加藥的問題,造成藥劑量及後續汙泥處理成本的提高。目前雖有對於控制加藥量的設備,但問題在其接觸性的偵測造成訊號上的干擾,而非接觸式的偵測儀器成本太高,低成本的非接觸式偵測系統實在有發展的必要。
本研究建立一套光學監測的系統來觀察並配合影像分析來分析混凝中的膠羽,對光學監測所得之影像分析其訊號變化,並將訊號與混凝結果做比較。研究中利用高嶺土配製人工濁度水進行混凝,以網路攝影機拍攝數位影像並分析其光訊號的變化。
實驗結果說明當濃度上升時,偵測的訊號亦跟著上升,而在一定濃度下訊號會隨著顆粒愈大而降低。在混凝過程中膠羽顆粒的變化反應在訊號上,而與混凝的結果比較下可發現,良好的混凝其訊號值會出現明顯且快速的下降趨勢接著在一固定值上下震動,而失敗的混凝則無此趨勢僅上下跳動。另外由偵測值及混凝結果可發現,要達到良好的混凝,混凝藥劑量的添加小於傳統瓶杯所決定的最佳加藥量。在碎形維度的結果分析方面,由於碎形相似皆為1.9故無法看出其差別。
摘要(英) Coagulation process is one of the important procedures of solid/liquid separation in water/wastewater treatment. There are many factors affects the success in coagulation among them, the dosage of coagulant is most difficult to control. The dosage of coagulant is usually determined by jar test or the experience of operators, which always leads to an overdose of coagulant. But overdosing causes high cost of coagulant, also high cost on sludge disposing. So far, existing equipments either high interference or high cost. There is necessary to develop a technique of low interference and low cost.
In this research, to set up an optical image monitoring technique for coagulation, operate with image analysis observation and analysis the flocs in coagulation. Turbid water is made by kaolin particles dilute with tap water. Analyze the image which is captured by web camera, and compare analyzed data with the result of coagulation.
The results shows that the RGB values increased as the concentration of particles increased. Also, the RGB values decreased as the particles size increased when the mass concentration of particles remained the same. Therefore, as particles grew during coagulation, the RGB values changes correspondingly. Compare with the RGB values and coagulation, in successful coagulation there is a clear decreased trend of the RGB values and then jumped up and down about a value. But there is no trend in failed coagulation. Besides, from the RGB values and the situation of coagulation, the dosage of coagulant is less the dosage decided by jar test. On the results of fractal dimension, the flocs look similar and the fractal dimension of flocs were about 1.9.
關鍵字(中) ★ 多元氯化鋁
★ 高嶺土
★ 混凝
★ 光學監測
關鍵字(英) ★ PACl
★ kaolin
★ coagulation
★ optical monitoring
論文目次 CONTENT
CHAPTER Ⅰ INTRODUCTION 1
1.1 Background 1
1.2 Objective 2
1.3 Framework and flow path of this research 3
CHAPTER Ⅱ BACKGROUND 5
2.1 Theory of colloid aggregation 5
2.1.1. Origin of surface charge 5
2.1.2. Stability of Colloid in water 8
2.1.3. Destabilization mechanisms 9
2.2 Factors for coagulation process 12
2.2.1. pH value and the characteristic of raw water 12
2.2.2. Effects of alkalinity 12
2.2.3. Type and dosage of coagulant 13
2.2.4. Velocity gradient and duration of mixing 14
2.3 Coagulation monitoring 15
2.3.1. The photometric dispersion analyzer (PDA) 15
2.3.2. Flowing electric current dosing equipment 17
2.4 Light and color theory 17
2.4.1. Light and color 18
2.4.2. Color model 18
2.5 Theory of fractal 20
2.5.1. Characteristics of fractal 21
2.5.2. Fractal dimension 26
2.5.3. Calculation of fractal dimension 27
CHAPTER Ⅲ MATERIALS AND METHODS 31
3.1 Materials 31
3.1.1. Image capture system 31
3.1.2. Softwares of image analysis 32
3.1.3. Chemicals 34
3.1.4. Other experimental equipments 34
3.2 Setup of monitoring system 35
CHAPTER Ⅳ RESULT AND DICUSSION 37
4.1 Influences of particle size on the scattered light 37
4.1.1 Relationship between particle size and turbidity 37
4.1.2 Relationship between turbidity and the RGB analysis data 39
4.2 Rapid mixing monitoring in coagulation process 43
4.2.1 Optimal dosage determined by Jar test 45
4.2.2 Optimal dosage 45
4.2.3 Incremental dosing 46
4.2.4 Insufficient dosage and overdosed 48
4.2.5 Shorten rapid mixing time 51
4.3 Fractal dimensions 56
CHAPTER Ⅴ CONCLUSION AND SUGGESTION60
5.1 Conclusion 60
5.2 Suggestion 62
REFERENCE 63
參考文獻 1. 流動電流混凝投藥自動控制系統抗干擾能力的研究工業設計論文,http://lunwen.cnkjz.com/lunwen/65/98/lunwen_109737.html
2. 王祥洲,廢水處理系統光學監測系統之發展—非接觸式廢水流量與色度監測技術之建立,國立中央大學環境工程研究所碩士論文(2004),中壢
3. 李明靜,「河川表面流速與流量非接觸式量測方法之發展及應用」,國立成功大學水利及海洋工程學系碩博士論文(2003),台南
4. Taiwo O. Kayode and John Gregry , “A new technique for monitoring sludge conditioning”, Water Research, 22(1), 85-90 (1988).
5. 駱尚廉,楊萬發編著,自來水工程,茂昌圖書有限公司(1990)
6. John Bratby, “Coagulation and flocculation in water and wastewater treatment”, IWA Publishing, London, (2006).
7. 林天賜,「高嶺土粒子凝聚現象之理論與實驗分析」,國立台灣大學化學工程學研究所碩士論文(1996),台北
8. Y.Ganz, “Water Treatment”, American Water Works Association, 1, (2003).
9. C. Rattanakawin and R. Hogg, “Aggregate size distributions in flocculation”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177, 87-98 (2001).
10. 高肈藩編著,給水工程,宏榮堂印刷(1980)
11. Changqing Ye, Dongsheng Wang, Baoyou Shi, Jianfeng Yu, Jiuhui Qu, Marc Edwards, and Hongxiao Tang, “Alkalinity effect of coagulation with polyaluminum chlorides:Role of electrostatic patch”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294, 163-173 (2007).
12. Xiaohong Wu, Xiaopeng Ge, Dongsheng Wang, and Hongxiao Tang, “Distinct coagulation mechanism and model between alum and high Al13-PACl”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 305, 89-96 (2007).
13. Patrick T. Spicer, Sotiris E. Prasinis, Judy Raper, Rose Amal, Graeme Bushell, and Gabrie Meesters, “Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks”, Powder Technology, 97, 26-34 (1998).
14. Chichuan Kan, Chihpin Huang, and Jill Ruhsing Pan, “Time requirement for rapid-mixing in coagulation”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 203, 1-9 (2002).
15. Photometric Dispersion Analyser PDA2000 Operating Manual, Rank Brothers Ltd. Cambridge, England.
16. Chihpin Huang and Chi-Bing Liu, “Automatic control for chemical dosing in laboratory-scale coagulation process by using an optical monitor”, Water Research, 30(8), 1924-1929 (1996).
17. Chichuan Kan and Chihpin Huang, “Coagulation monitoring in surface water treatment facilities”, Water Science and Technology, 38(3), 237-244 (1998).
18. Shanahan Chou, Shihcheng Lin, and Chihpin Huang, “Application of optical monitor to evaluate the coagulation of pulp wastewater”, Water Science and Technology, 37(12), 111-119 (1998).
19. Shui-li YU, and Gui-bai LI, On-line monitoring of the coagulation process of normal turbidity water《工業用水與廢水》雜誌,第3期 (1999)
20. K.N. Plataniotis, and A.N. Venetsanopoulos, Color Image Processing and Application, Springer, Berlin, (2000).
21. Mandelbrot, B. B., “The fractal geometry of nature”, W. H. Freeman, New York (1983).
22. 梁雲芳撰,碎形-奇怪的形狀,無窮的運用,科學發展2003年10月,370期,48-53頁
23. 碎形簡介,http://web.kshs.kh.edu.tw/math/research/%B8H%A7%CE%C2%B2%A4%B6.pdf
24. 吳文成,碎形 Fractal,http://www.atlas-zone.com/complex/fractals/index.html#new
25. 林伯航,應用碎形分析河川棲地分佈之時空特性,國立中央大學土木工程研究所碩士論文(1994),中壢
指導教授 秦靜如(Ching-Ju Monica Chin) 審核日期 2008-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明