博碩士論文 953206020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.119.131.178
姓名 陳永盛(Yung-sheng Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 大氣氣膠碳成分量測方法比較及干擾因子的探討
(On the study of measuring methods and interfering factors in the determination of atmospheric aerosol carbons)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以熱-光學法分析大氣氣膠碳成分,是廣泛被使用的量測方法,這種方法對於分析過程產生裂解碳的矯正程序,可分成熱-光學反射(TOR)和熱-光學透射(TOT)兩種。本文比較不同溫度協定與裂解碳校正方法的差異,並探討濾紙採樣受到揮發性有機化合物(VOCs, Volatile Organic Compounds)干擾的影響。此外,本文也在海岸地區採樣,進行NaCl對於EC成分解析干擾的評估。最後再以北部新莊微粒超級測站的BC (black carbon)與EC (elemental carbon)監測數據進行線性迴歸分析,以斜率得到BC吸光截面積(σ)的修正數值,訂定大台北都會區合適的σ數值,以及探討σ的影響因子。
研究結果顯示,當大氣氣膠碳成分濃度增加,微粒在濾紙沉積厚度變大,TOR比TOT方式所估算的裂解碳濃度將較低。都市地區由於受到車輛排放與溫度的影響,當進行碳成分採樣時,石英濾紙吸附VOCs的濃度將會提升,且微粒有機碳揮發情形較為顯著。經由北縣石門海岸測站觀測結果顯示,當Na+濃度達3 ~ 6 μg m-3之間時,Na+對於EC成分解析的干擾情形顯著。
本文以2006 ~ 2007兩年環保署北部微粒超級測站逐時數據共約17,000筆,得到σ的修正數值,在這段期間σ數值變動範圍約在20 ~ 40 m2 g-1,當硝酸鹽濃度增加、臭氧發生高濃度、大氣相對濕度達90%以上、以及降雨事件時段,都將造成σ數值上升。本文在評估σ數值日變化時,發現上下班尖峰時段σ數值跟著增加。σ的日變化也與PM2.5、PAH(總多環芳香烴)、OC(有機碳)日變化三者具有良好的相關,顯示當大氣氣膠濃度與有機成分增多將對σ數值造成影響。對於大台北都會區合適的σ數值,本文建議應該從製造商提供的16.6 m2 g-1改為24.5 m2 g-1,此數值適用於AE 31吸光儀量測BC的880 nm波段。
摘要(英) The thermal-optical method is widely used for measuring atmospheric aerosol carbons. In this method, pyrolyzed carbon correction can be split into thermal optical reflectance (TOR) and thermal optical transmittance (TOT). This study compares the differences due to different temperature protocols and pyrolyzed carbon corrections. Meanwhile, the interferences of volatile organic carbons (VOCs) on aerosol carbon analysis for filter samples are also studied. Moreover, the effects of NaCl on EC fractionization in the coastal area are evaluated. Finally, the monitoring data of aerosol black carbon (BC) and elemental carbon (EC) from North aerosol supersite are adopted to conduct a linear regression analysis. The slope resulted from this analysis is considered to be the best BC absorption cross section (σ) and the influencing factors of σ values are also disussed.
The results show that TOR tends to underestimate pyrolyzed carbon correction when atmospheric carbon concentration is increased and thus the depth of particle deposition on a filter. Under the influence of vehicle exhausts and ambient temperature, VOCs adsorption by quartz fiber filter will be increased when using the filter in aerosol collection. Meanwhile, organic carbon evaporation from deposited particles is severer. The interference of Na+ on EC fractionization is significant when Na+ concentration reaches 3 - 6 μg m-3 based on the observation at the Shimen site on the coastline of Taipei County.
In this study, 17,000 hourly data from North aerosol supersite were used to obtain the correction value of σ. The variation of σ is within the range of 20 - 40 m2 g-1 during this time period. Meanwhile, the value of σ is found to increase with higher aerosol nitrate, higher ozone concentration, higher atmospheric relative humidity above 90%, and the duration of raining event. In the diurnal variation of σ, σ value is found to enhance in the traffic peak hours. The diurnal variations of σ value are also agreed well with that of PM2.5, PAH, and OC. It indicates that the increase of atmospheric aerosols and aerosol organic fractions will affect σ values. The best σ value in the greater Taipei metropolis is recommended to change from the manufacturer’s 16.6 to 24.5 m2 g-1 for AE31 Aethalometer in measuring BC at 880 nm wavelength.
關鍵字(中) ★ 氣膠碳成分
★ 碳成分量測方法比較
★ NaCl干擾
★ 黑碳吸光截面積σ
★ VOCs
關鍵字(英) ★ Aerosol carbon fractions
★ comparison of aerosol carbon measurements
★ NaCl interference
★ absorption cross section of black carbon (σ)
★ Volatile organic carbons (VOCs)
論文目次 摘要 I
Abstract III
致謝 V
圖目錄 IX
表目錄 XII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1大氣氣膠的來源及特性 3
2.1.1 氣膠的來源與及分類 3
2.1.2 氣膠的化學特性與粒徑分布 3
2.2氣膠碳成分特性 8
2.2.1 碳成分來源與組成 9
2.2.2 碳成分分布 10
2.3 氣膠碳成分的量測方法 12
2.3.1 IMPROVE (TOR)碳分析法 12
2.3.2 NIOSH (TOT)碳分析法 14
2.3.3 Aethalometer (AE31)氣膠吸光儀 15
2.4氣膠碳成分量測方法比較 16
2.5 微粒有機碳受VOCs影響推估 22
2.6 化學水溶性離子對於元素碳的干擾 24
2.7 黑碳吸光截面積的變化 26
第三章 研究方法 35
3.1 監測及採樣位址選定 38
3.1.1監測及採樣地點 38
3.1.2 監測及採樣時間 40
3.2 氣膠特性監測及採樣儀器 41
3.2.1 連續自動監測儀器 41
3.2.2連續自動監測儀器數據分析處理 42
3.2.3 人工採樣器 44
3.3 人工採樣分析方法 46
3.3.1 氣膠質量濃度秤重分析 46
3.3.2 氣膠水溶性離子分析 47
3.3.3 氣膠碳成分分析 48
3.4 碳成分監測及分析儀器 49
3.4.1 DRI 2001氣膠碳成分分析儀 49
3.4.2 Sunset 5040半自動氣膠碳成分監測儀 52
3.4.3 AE 31氣膠吸光儀(黑碳濃度監測儀) 54
3.5 碳成分量測方法比較 57
3.5.1 IMPROVE與NIOSH分析方法比較 57
3.5.2 調整溫度協定造成的分析差異 57
3.5.3 TOT與TOR裂解碳校正差異 59
3.5.4 VOCs的影響及氣膠有機碳推估 60
3.5.5 石英濾紙吸附VOCs的飽和試驗 61
3.6 NaCl對於元素碳的干擾評估 62
3.7 黑碳吸光截面積的建立 63
第四章 結果與討論 67
4.1 碳分析儀測試及校正 67
4.1.1 DRI 2001碳分析儀測試及校正 67
4.1.2 Sunset 5040 碳分析儀測試及校正 72
4.1.3 AE 31 吸光儀測試及校正 74
4.1.4 濾紙樣本重複試驗精確性評估 75
4.2 碳成分量測方法比較 77
4.2.1 IMPROVE與NIOSH分析方法比較 77
4.2.2 調整溫度協定造成的分析差異 81
4.2.3 TOT與TOR校正方法差異 86
4.2.4 微粒沉積厚度對於TOT與TOR方法的估算差異 91
4.2.5微粒有機碳(POC)的誤差推估 96
4.2.6 石英濾紙吸附VOCs的飽和試驗 102
4.3 黑碳及元素碳的量測方法比較 104
4.4 化學水溶性離子對於EC的干擾評估 107
4.4.1 NaCl對EC干擾試驗 108
4.4.2 海岸背景測站的EC受NaCl的干擾影響 112
4.5 黑碳吸光截面積的碳討 120
4.5.1 黑碳吸光截面積的建立 120
4.5.2 造成黑碳吸光截面積變化的影響因子 122
4.5.3 影響黑碳吸光截面積變化的事件日評估 126
4.5.4 黑碳吸光截面積的日變化 135
4.5.5 黑碳吸光截面積的季節性變化 142
4.5.6 台北都會區合適的黑碳吸光截面積數值 144
第五章 結論與建議 148
5.1 結論 148
5.2 建議 150
參考文獻 152
附錄一 口試委員意見答覆 166
附錄二 臭氧高濃度事件日的黑碳吸光截面積逐時變化 171
參考文獻 溫志雄,(2002)。台灣一般大氣氣膠化學成份之連續監測及含水量之量測。國立中央大學環境工程研究所碩士論文。
林姵吟,(2002)。台北都會區黃沙時期氣膠特性。國立中央大學環境工程研究所碩士論文。
朱宏勳,(2004)。長程傳輸對北台灣大氣氣膠特性的影響。國立中央大學環境工程研究所碩士論文。
黃薇如,(2006)。大氣氣膠碳成分量測誤差與台北都會區有機氣膠特徵之研究。國立中央大學環境工程研究所碩士論文。
方彥仁,(2006)。長程傳輸對台灣北端氣膠酸鹼度與汙染物演化生成程序的影響。國立中央大學環境工程研究所碩士論文。
陳邦瑋,(2006)。從台北都會區細氣膠特性評估PM1及PM2.5對環境影響的顯著性。國立中央大學環境工程研究所碩士論文。
王之群,(2006)。台北都會區近三年連續監測及事件日氣膠特性。國立中央大學環境工程研究所碩士論文。
劉原良,(2006)。生質燃燒與非生質燃燒期間台灣中部高山氣膠及其前驅氣體特性變化。國立中央大學環境工程研究所碩士論文。
翁國豪,(2008)。生質燃燒氣膠長程傳輸及高山雲霧間隙氣膠特性之研究。國立中央大學環境工程研究所碩士論文。
李崇德、柳中明,2002。東亞沙塵暴與背景測站懸浮微粒成分特徵之研究,EPA-91-U1L1-02-107,行政院環保署,民國九十一年十二月。
周崇光、許世傑,2002。2002年亞洲沙塵暴對台北市空氣品質影響影響期間之科學判斷,中央研究院環境變遷研究所。
李崇德、周崇光、溫志雄、莊銘棟、陳永盛,2007。"微粒空氣污染物特性、毒性和健康風險之研究,分組:環保署北部微粒超級測站監測特性彙整及評估",環保署/國科會空污防制科研合作計畫,NSC96-EPA-Z-008-003,民國97年1月17日。
李崇德、周崇光、張士昱、莊銘棟、溫志雄、羅莉雯、陳永盛、侯雅馨、賴信佑,2007。 “九十六至九十七年度北部微粒超級監測站操作品保及數據分析計畫” 第一年度期末報告, EPA-96-FA11-03-A007,行政院環保署。
Alfaro, S.C., Lafon, S., Rajot, J.L., Formenti, P., Gaudichet, A., Maille, M., 2004. Iron oxides and light absorption by pure desert dust: An experimental study. Journal of Geophysical Research 109, D08208, doi:10.1029/2003 JD004374.
Anderson, R.R., Martello, D.V., Rohar, P.C., Strazisar, B.R., Tamilia, J.P., Waldner, K., White, C.M., Modey, W.K., Mangelson, N.F., Eatough, D.J., 2002. Sources and Composition of PM2.5 at the National Energy Technology Laboratory in Pittsburgh During July and August 2000. Energy and Fuels 16, 261–269.
Andreae, M.O., 1995. Climatic effects of changing atmospheric aerosol levels. World Survey of Climatology 16, Henderson-Sellers, A., 341–392.
Andreae, M.O., Gelencser, A., 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmospheric Chemistry and Physics Discussion 6, 3419–3463.
Arnott, W.P., Hamasha, K., Moosmuller, H., Sheridan, P.J., Ogren, J.A., 2005. Towards aerosol light absorption measurements with a 7-wavelength aethalometer: evaluation with a photoacoustic instrument and a 3-wavelength nephelometer. Aerosol Science and Technology 39, 17–29.
Bond, T.C., Anderson, T.L., Campbell, D., 1999. Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Science and Technology 30, 582–600.
Bond, T.C., Bergstrom, R.W., 2006. Light absorption by carbonaceous particles: An investigative 5 review. Aerosol Science and Technology 40, 27–67.
CARB, California Air Resources Board, Proposed identification of diesel exhaust as a Toxic Air Contaminant. Appendix III, Part A, Exposure Assessment. ARB, Sacramento, CA, 1998.
Cal EPA, Chemicals known to the state to cause cancer or reproductive toxicity, http://www.oehha.ca.gov/prop65/prop65_list/files/P65single052005.pdf, Proposition 65 list of chemicals, effective May 2005.
Chang, S.C., Lee, C.T., 2007. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994 to 2003. Atmospheric Environment 41, 4002-4017.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Maglino, K.L., Ziman, S.D., Richards, L.W., 1993. PM10 and PM2.5 compositions in California's San Joaquin Valley. Aerosol Science and Technology 18, 105-128.
Chow, J.C., Watson, J.G., Pritchett, L.C., Pierson, W.R., Frazier, C.A., Purcell, R.G., 1993. The DRI thermal/optical reflectance carbon analysis system:description, evaluation and application in US. Air Quality Studies. Atmospheric Environment 27, 1185-1201.
Chow, J.C., Watson, J.G., Crow, D., Lowenthal, D.H., Merriifield, T., 2001. Comparison of IMPROVE and NIOSH Carbon Measurements. Aerosol Science and Technology 34, 23-34.
Chow, J.C., Watson, J.G., Chen, L.W., Arnott, W.P., Moosmüller, H., 2004. Equivalence of Elemental Carbon by Thermal/Optical Reflectance and Transmittance with Different Temperature Protocols. Environmental Science and Technology 38, 4414-4422.
Chow, J.C., Watson, J.G., Chen, L.W.A., Paredes-Miranda, G., Chang, M.C.O., Trimble, D., Fung, K.K., 2005. Refining temperature measures in thermal/optical carbon analysis. Atmospheric Chemistry and Physics 5, 2961-2972.
Chung, S.H., Seinfeld, J.H., 2002. Global distribution and climate forcing of carbonaceous aerosols. Journal of Geophysical Research 107, 4407.
Chylek, P., Videen, G., Ngo, D., Pinnick, R.G., Klett, J.D., 1995. Effect of black carbon on the 15 optical properties and climate forcing of sulfate aerosols. Journal of Geophysical Research 100, 16325–16332.
Colbeck, I., Atkinson, B., Johar, Y., 1997. The morphology and optical properties of soot produced by different fuels. Journal of Aerosol Science 28, 715–723.
Collaud Coen, M., Weingartner, E., Schaub, D., Hueglin, C., Corrigan, C., Henning, S., Schwikowski, M., Baltensperger, U., 2004. Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis. Atmospheric Chemistry and Physics 4, 2465–2480.
Cozic, J., Verheggen, B., Weingartner, E., Crosier, J., Bower, K.N., Flynn, M., Coe, H., Henning, S., Steinbacher, M., Henne, S., Collaud Coen M., Petzold, A., Baltensperger, U., 2008. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch. Atmospheric Chemistry and Physics 8, 407-423.
Dillner, A.M., Stein, C., Larson, S.M., Hitzenberger, R., 2001. Measuring the mass extinction efficiency of elemental carbon in rural aerosol. Aerosol Science and Technology 35, 1009–1021.
Ding, Y., Pang, Y., Eatough, D.J., Eatough, N.L., Tanner, R.L., 2002b. High-Volume Diffusion Denuder Sampler for the Routine Monitoring of Fine Particulate Matter: II. Field Evaluation of the PC-BOSS. Aerosol Science and Technology 36, 383–396.
Dobbins, R.A., Mulholland, G.W., Bryner, N.P., 1994. Comparison of a fractal smoke optics model with light extinction measurements. Atmospheric Environment 28, 889–897.
Duan, F., He, K., Ma, Y., Jia, Y., Yang, F., Lei, Y., Tanaka, S., Okuta, T., 2005. Characteristics of carbonaceous aerosols in Beijing, China. Atmospheric Environment 60, 355-364.
Eatough, D.J., Wadsworth, A., Eatough, D.A., Crawford, J.W., Hansen, L.D., Lewis, E.A., 1993. AMultiple-System, Multichannel Diffusion Denuder Sampler for the Determination of Fine-Particulate Organic Material in the Atmosphere. Atmospheric Environment 27, 1213–1219.
Fialhoa, P., Freitasb, M.C., Barataa, F., Vieirab, B., Hansenc, A.D.A., Honrathd, R.E., 2006. The Aethalometer calibration and determination of iron concentration in dust aerosols. Journal of Aerosol Science 37, 1497-1506.
Fruin, S.A., Winer, A.M., Rodes, C.E., 2004. Black carbon concentrations in California vehicles and estimation of invehicle diesel exhaust particulate matter exposures. Atmospheric Environment 38, 4123–4133.
Fuller, K.A., Malm, W.C., Kreidenweis, S.M., 1999. Effects of mixing on extinction by carbonaceous particles. Journal of Geophysical Research 104, 15941–15954.
Grosjean, D., Williams, E.L., Grosjean, E., Novakov, T., 1994. Evolved gas-analysis of secondary organic aerosols. Aerosol Science and Technology 21, 306–324.
Hansen, A.D.A., Rosen. H., Novakov, T., 1984. The aethalometer-an instrument for the real-time measurement of optical absorption by aerosol particles. Science of the Total Environment 36, 191-196.
Hansen, A.D.A., Kapustin, V.N., Kopeikin, V.M., Gillette, D.A., Bodhaine, B.A., 1993. Optical absorption by aerosol black carbon and dust in a desert region of Central Asia. Atmospheric Environment 27, 2527-2531.
Hansen, J.E., Sato, M., Lacis, A., Ruedy, R., Tegen, I., Matthews, E., 1998. Climate forcings in the industrial era. Proceedings National Academy of Sciences USA 95, 12753–12758.
Hansen, J., Nazarenko, L., 2004. Soot climate forcing via snow and ice albedos. Proceedings National Academy of Sciences USA 101, 423–428.
Hansen, J., Sato, M., Ruedy, R., 2005. Efficacy of Climate Forcings. Journal of Geophysical Research 110, 18104.
Hart, K.M., Pankow, J.F., 1994. High-Volume Air Sampler for Particleand Gas Sampling. 2. Use of Backup Filters to Correct for the Adsorption of Gas-Phase Polycyclic Aromatic-Hydrocarbons to the Front Filter. Environment Science Technology 28, 655–661.
Hitzenberger, R., Jennings, S.G., Larson, S.M., Dillner, A., Cachier, H., Galambos, Z., Rouc, A., Spain, T.G., 1999. Intercomparison of measurement methods for black carbon aerosols. Atmospheric Environment 33, 2823–2833.
Hoffer, A., Gelencser, A., Guyon, P., Kiss, G., Schmid, O., Frank, G.P., Artaxo, P., Andreae, M.O., 2006. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmospheric Chemistry Physics 6, 3563–3570.
Horvath, H., 1993. Atmospheric Light Absorption — A Review. Atmospheric Environment 27, 293-317.
Horvath, H., 1995. Size segregated light absorption coefficient of the atmospheric aerosol. Atmospheric Environment 29, 875–883.
Horvath, H., 1997. Experimental calibration for aerosol light absorption measurements using the integrating plate method —summary of the data. Journal of Aerosol Science 28, 1149–1161.
Huebert, B., Bates, T., Russell, P., Shi, G., Kim, Y., Kawamura, K., Carmichael, G., Nakajima, T., 2003. An Overview of ACE-Asia: Strategies for Quantifying the Relationships Between Asian Aerosols and their Climatic Impacts. Journal of Geophysical Research 108, 8633, doi: 10.1029/2003JD003550.
Huffman, H.D., 1996. The reconstruction of aerosol light absorption by particle measurements at remote sites: An independent analysis of data from the IMPROVE Network – II. Atmospheric Environment 30, 85–99.
Huntzicker, J.J., Johnson, R.L., Shah, J.J., Cary, R.A., 1982. Analysis of organic and elemental carbon in ambient aerosols by a thermal-optical method. Particulate Carbon: Atmospheric Life Cycle. Plenum Press, New York, 79-88.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695–697.
Jacobson, M.Z., 2002. Analysis of aerosol interactions with numerical techniques for solving coagulation, nucleation, condensation, dissolution, and reversible chemistry among multiple size distributions. Journal of Geophysical Research 107, AAC 2-1-AAC 2-23.
Jeong, C.H., Lee, D.W., Kim, E., Hopke, P.K., 2004. Measurement of real-time PM2.5 mass, sulfate, and carbonaceous aerosols at the multiple monitoring sites. Atmospheric Environment 38, 5247-5256.
Johnson, R.L., Shah, J.J., Cary, R.A., Huntzicker, J.J., 1981. An automated thermal-optical method for the analysis of carbonaceous aerosol. Atmospheric Aerosol: Source/Air Quality Relationships. American Chemical Society, Washington, DC, 223-233.
Joseph, D., Metza, B.J., Malm, W.C., Pitchford, M.L., 1987. A federal program to monitor visibility in class I areas. In: Bhardwaja, P.J. (Ed.), Visibility Protection: Research and Policy Aspects. Air Pollution Control Association, Pittsburgh.
Kim, B.M., Cassmassi, J., Hogo, H., Zeldin, M.D., 2001. Positive Organic Carbon Artifacts on Filter Medium During PM2.5 Sampling in the South Coast Air Basin. Aerosol Science Technology 34, 35–41.
Kirchstetter, T.W., Corrigan, C.E., Novakov, T., 2001. Laboratory and Field Investigation of the Adsorption of Gaseous Organic Compounds onto Quartz Filters, Atmosphere Environment 35, 1663–1671.
Kirchstetter, T.W., Novakov, T., 2007. Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmospheric Environment 41, 1874-1888.
Kopp, C., Petzold, A., Niessner, R., 1999. Investigation of the specific attenuation cross-section of aerosols deposited on fiber filters with a polar photometer to determine black carbon. Journal of Aerosol Science 30, 1153–1163.
Kuhlbusch, T., 1995. Method for Determining Black Carbon in Residues of Vegetation Fires. Environment Science and Technology 29, 2695–2702.
Kulmala, M., Keronen, P., Laaksonen, A., Vesala, T., Korhonen, P., 1995. The Effect of HCl on Cloud Droplet Formation. Journal of Aerosol Science 26, 413-414.
Larson, T., Koenig, J., 1993. A summary of the emissions characterization and noncancer respiratory effects of wood smoke. EPA-453/R-93-046-US EPA.
Lavanchy, V.M.H., Gaggeler, H.W., Nyeki, S., Baltensperger, U., 1999. Elemental carbon (EC) and black carbon (BC) measurements with a thermal method and an aethalometer at the high-alpine research station Jungfraujoch. Atmospheric Environment 33, 2759–2769.
Lim, H.J., Turpin, B.J., Edgerton, E., Hering, S.V., Allen, G., Maring, H., Solomon, P., 2003. Semicontinuous aerosol carbon measurements: Comparison of Atlanta Supersite measurements. Journal of Geophysical Research 108, 8419, doi:10.1029/2001JD001214.
Lin, C., Friedlander, S.K., 1988. Soot oxidation in fibrous filters. 2. Effects of temperature, oxygen partial pressure, and sodium additives. Langmuir 4, 898-903.
Lindberg, J.D., Douglass, R.E., Garvey, D.M., 1999. Atmospheric particulate absorption and black carbon measurement. Applied Optics 38, 2369–2376.
Linke, C., M¨ohler, O., Veres, A., Mohacsi, A., Bozoki, Z., Szabo, G., Schnaiter, M., 2006. Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study. Atmospheric Chemistry and Physics 6, 3315–3323.
Liousse, C., Cachier, H., Jennings, S.G., 1993. Optical and thermal measurements of black carbon aerosol content in different environments: Variation of the specific attenuation crosssection, sigma (s), Atmospheric Environment 27, 1203–1211.
Liousse, C., Devaux, C., Dulac, F., Cachier, H., 1995. Aging of savanna biomass burning aerosols: Consequences on their optical properties. Journal of Atmospheric Chemistry 22, 1–17.
Mader, B.T., Pankow, J.F., 2001. Gas/Solid Partitioning of Semivolatile Organic Compounds (SOCs) to Air Filters. 3. An Analysis of Gas Adsorption Artifacts in Measurements of Atmospheric SOCs and Organic Carbon (OC) When Using Teflon Membrane Filters and Quartz Fiber Filters. Environment Science Technology 35, 3422–3432.
Malm, W.C., Sisler, J.F., Huffman, D., Eldred, R.A., Cahill, T.A., 1994. Spatial and seasonal trends in particle concentration and optical extinction in the U.S. Journal of Geophysical Research 99, 1347–1370.
Malm, W.C., Pitchford, M.L., McDade, C., Ashbaugh, L.L., 2007. Coarse particle speciation at selected locations in the rural continental United States. Atmospheric Environment 41, 2225-2239.
Mangelson, N.F., Lewis, L., Joseph, J.M., Cui, W., Machir, J., Williams, N.W., Eatough, D.J., Rees, L.B., Wilkerson, T., Jensen, D.T., 1997. The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in cache valley, utah. Journal of the Air and Waste Management Association 47, 167-175.
Martins, J.V., Artaxo, P., Liousse, C., Reid, J.S., Hobbs, P.V., Kaufman, Y.J., 1998. Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. Journal of Geophysical Research 103, 32041–32050.
Mayol-Bracero, O., Gabriel, R., Andreae, M., Kirchstetter, T., Novakov, T., Ogren, J., Sheridan, P., Streets, D., 2002. Carbonaceous Aerosols Over the Indian Ocean During the Indian Ocean Experiment (INDOEX): Chemical Characterization, Optical Properties, and Probable Sources. Journal of Geophysical Research 107, 8030.
McDow, S.R., Huntzicker, J.J., 1990. Vapor Adsorption Artifact in the Sampling of Organic Aerosol—Face Velocity Effects. Atmosphere Environment 24, 2563–2571.
Minoura, H., Takahashi, K., Chow, J.C., Watson, J.G., 2006. Multi-year trend in fine and coarse particle mass, carbon, and ions in downtown Tokyo, Japan. Atmospheric Environment 40, 2478-2487.
Modey, W.K., Pang, Y., Eatough, N.L., Eatough, D.J., 2001. Fine Particulate (PM2.5) Composition in Atlanta, USA: Assessment of the Particle Concentrator-Brigham Young University Organic Sampling System, PCBOSS, During the EPA Supersite Study. Atmosphere Environment 35, 6493–6502.
Moosmüller, H., Arnott, W.P., Rogers, C.F., Chow, J.C., Frazier, C.A., Sherman, L.E., Dietrich, D.L., 1998. Photoacoustic and filter measurements related to aerosol light absorption during the Northern Front Range Air Quality Study (Colorado 1996/1997). Journal of Geophysical Research 103, 28149–28157.
Novakov, T., Corrigan, C.E., 1995. Thermal characterization of biomass smoke particles. Mikrochimica Acta 119, 157–166.
Nunes, T.V., Pio, C.A., 1993. Carbonaceous aerosol in industrial and coastal atmospheres. Atmospheric Environment 27, 1339-1346.
Petzold, A., Niessner, R., 1995. Method comparison study on soot-selective techniques. Mikrochimica Acta 117, 215–237.
Petzold, A., Kopp, C., Niessner, R., 1997. The dependence of the specific attenuation cross 20 section on black carbon mass fraction and particle size. Atmospheric Environment 31, 661–672.
Petzold, A., Schonlinner, M., 2004. Multi-angle absorption photometry – a new method for the measurement of aerosol light absorption and atmospheric black carbon. Journal of Aerosol Science 35, 421–441.
Pöschl, U., 2003. Aerosol particle analysis: challenges and progress. Analytical and Bioanalytical Chemistry 375, 30–32.
Quinn, P., Coffman, D., Bates, T.,Welton, E., Covert, D., Miller, T., Johnson, J., Maria, S., Russell, L., Arimoto, R., Carrico, C., Rood, M., Anderson, J., 2004. Aerosol Optical Properties Measured on Board the Ronald H. Brown During ACE-Asia as a Function of Aerosol Chemical Composition and Source Region. Journal of Geophysical Research 109 D19501, doi: 10.1029/2003JD004010.
Ramanathan, V., Chung, C., Kim, D., Bettge, T., Buja, L., Kiehl, J.T., Washington, W.M., Fu, Q., Sikka, D.R., Wild, M., 2005. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proceedings National Academy of Sciences USA 102, 5326–5333.
Raes, F., Van Dingenen, R., Vignati, E., Wilson, J., Putaud, J.P., Seinfeld, J.H., Adams, P., 2000. Formation and cycling of aerosols in the global troposphere. Atmospheric Environment 34, 4215–4240.
Redemann, J., Russell, P.B., Hamill, P., 2001. Dependence of aerosol light absorption and 5 single-scattering albedo on ambient relative humidity for sulfate aerosols with black carbon cores. Journal of Geophysical Research 106, 27485–27495.
Reid, J.S., Hobbs, P.V., Ferek, R.J., Blake, D.R., Martins, J.V., Dunlap, M.R., Liousse, C., 1998. Physical, chemical, and optical properties of regional hazes dominated by smoke in Brazil. Journal of Geophysical Research 103, 32059–32080.
Reid, J.S., Eck, T.F., Christopher, S.A., Koppmann, R., Dubovik, O., Eleuterio, D.P., Holben, B.N., Reid, E.A., Zhang, J., 2005. A review of biomass burning emissions part III: intensive optical properties of biomass burning particles. Atmospheric Chemistry Physical 5, 827–849.
Ruellan, S., Cachier, H., 2000. Characterization of fresh particulate vehicular exhaust near a Paris high flow road. Atmospheric Environment 35, 453–468.
Schauer, J.J., Mader, B.T., Deminter, J.T., 2003. ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon. Environment Science and Technology 37, 993–1001.
Schnaiter, M., Horvath, H., Mohler, O., Naumann, K.H., Saathoff, H., Schock, O.W., 2003. UV–VIS–NIR spectral optical properties of soot and soot-containing aerosols. Journal of Aerosol Science 34, 1421–1444.
Schnaiter, M., Schmid, O., Petzold, A., Fritzsche, L., Klein, K.F., Andreae, M.O., Helas, G., Thielmann, A., Gimmler, M., Möhler, O., Linke, C., Schurath, U., 2005. Measurement of wavelength-resolved light absorption by aerosols utilizing a UV-VIS extinction cell. Aerosol Science and Technology 39, 249–260.
Sharma, S., Brook, J.R., Cachier, H., Chow, J., Gaudenzi, A., Lu, G., 2002. Light absorption and thermal measurements of black carbon in different regions of Canada. Journal of Geophysical Research 107, 4771, doi:10.1029/2002JD 002496.
Shi, J.P., Evans, D.E., Khan, A.A., Harrison, R.M., 2001. Sources and Concentration of Nanoparticles (<10 nm Diameter) in the Urban Atmosphere. Atmospheric Environment 35, 1193-1202.
Snyder, D.C., Schauer, J.J., 2007. An Inter-Comparison of Two Black Carbon Aerosol Instruments and a Semi-Continuous Elemental Carbon Instrument in the Urban Environment. Aerosol Science and Technology 41, 463-474.
Stipe, C.B., Higgins, B.S., Lucas, D., Koshland, C.P., Sawyer, R.F., 2005. Inverted co-flow diffusion flame for producing soot. Reviews of Scientific Instruments 76, 023908.
Turner, J., Hering, S., 1994. The additivity and stability of carbon signatures obtained by eveolved gas analysis. Aerosol Science and Technology 21, 294–305.
Turpin, B.J., Huntzicker, J.J., Hering, S.V., 1994. Investigation of Organic Aerosol sampling Artifacts in the Los Angeles Basin. Atmosphere Environment 28, 3061–3071.
Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment 29, 3527-3544.
Turpin, B.J., Saxena, P., Andrews, E., 2000. Measuring and Simulating Particulate Organics in the Atmosphere: Problems and Prospects. Atmosphere Environment 34, 2983–3013.
U.S. Environment Protection Agency, 1999. Air Quality Criteria for Particulate Matter Volume 1. EPA/600/P-99/002a, Office of Research and Development, Washington, DC.
Valaoras, G., Huntzicker, J.J., White, W.H., 1988. On the contribution of motor vehicles to the Athenian “Nephos” an application of factor aignitres. Atmospheric Environment 22, 965-971.
Vedal, S., 1997. Critical Review—Ambient particles and health: lines that divide. Journal of the Air and Waste Management Association 47, 551–581.
Virkkula, A., Ahlquist, N.C., Covert, D.S., Arnott, W.P., Sheridan, P.J., Quinn, P.K., Coffman, D.J., 2005. Modification, calibration and field test of an instrument for measuring light absorption by particles. Aerosol Science and Technology 39, 68–83.
Watson, J.G., Chow, J.C., 2002. Comparison and evaluation of in-situ and filter carbon measurements at the Fresno Supersite. Journal of Geophysical Research 107, ICC 3-1-ICC 3-15.
Watson, J.G., Chow, J.C., Lowenthal, D.H., Stolzenburg, M.R., Kreisberg, N.M., and Hering, S.V., 2002. Particle Size Relationships at the Fresno Supersite. Journal of the Air and Waste Management Association 52, 822-827.
Watson, J.G., Chow, J.C., Antony Chen, L.W., 2005. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol and Air Quality Research 5, 65–102.
Weber, R.J., Chen, G., Davis, D.D., Mauldin, R.L., Tanner, D.J., Eisele, F.L., Clarke, A.D., Thornton, D.C., Bandy, A.R., 2001. Measurements of Enhanced H2SO4 and 3-4 nm Particles near a Frontal Cloud during the First Aerosol Characterization Experiment (ACE 1). Journal of Geophysical Research 106, 24107-24117.
Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., Baltensperger, U., 2003. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. Journal of Aerosol Science 34, 1445–1463.
Woo, K.S., Chen, D.R., Pui, D.Y.H., McMurry, P.H., 2001. Measurement of Atlanta Aerosol Size Distributions: Observations of Ultrafine Particle Events. Aerosol Science and Technology 34, 75-87.
Yu, J.Z., Xu, J., Yang, H., 2002. Charring characteristics of atmospheric organic particulate matter in thermal analysis. Environment Science and Technology 36, 754–761.
指導教授 李崇德(Chung-Te Lee) 審核日期 2008-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明