博碩士論文 953207020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:18.224.68.104
姓名 林坤億(Kun-yi Lin)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 波長調制外差散斑干涉術之研究
(Study of wavelength-modulated heterodyne speckle interferometry)
相關論文
★ MOCVD晶圓表面溫度即時量測系統之開發★ MOCVD晶圓關鍵參數即時量測系統開發
★ 應用螢光顯微技術強化RDL線路檢測系統★ 基於人工智慧之PCB瑕疵檢測技術開發
★ 基於 YOLO 物件辨識技術之 PCB 多類型瑕疵檢測模型開發★ 全場相位式表面電漿共振技術
★ 波長調制外差式光柵干涉儀之研究★ 攝像模組之影像品質評價系統
★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用★ 光強差動式表面電漿共振感測術之研究
★ 準共光程外差光柵干涉術之研究★ 全場相位式表面電漿共振生醫感測器
★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究★ 複合式長行程精密定位平台之研究
★ 紅外波段分光之全像集光器應用★ 太陽光譜分光器之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一套奈米級面內位移量測技術-「波長調制外差散斑干涉儀」。
利用雷射二極體波長可調制的特性,以鋸齒波之電流調制,使其波長產生週期性的變化,再結合巧妙的光路設計,利用刻意製造的光程差,干涉後即產生外差光源,並利用此外差光作為主要的量測光源。
  外差干涉術主要是將待測訊息載入光相位之中,擷取光相位以換算待測資訊。本論文以散斑干涉術、都卜勒移頻與光柵干涉術的理論基礎,設計出面內位移量測裝置。理論推導顯示,面內位移資訊確實能夠經由本實驗架構的設計載入干涉光之相位中。本研究開發出新的相位演算法,程式化後可以取代鎖相放大器,將系統成本大大降低。
  根據理論推導,本系統之理論解析度為1 pm。實驗結果證實,考慮環境擾動的情況下,本系統之實際解析度約10 nm,量測靈敏度為0.802 °/nm,系統最大可量測速度為18 μm/sec。
  本文中也對量測誤差進行討論,包含系統誤差與環境誤差。本研究架構對於環境誤差尚有改進之處,未來也將對於系統的缺失進行改善。
  本系統利用光學量測的方式,可以精密地量測位移量,搭配價格低廉的架構與新的演算法,可取代昂貴的儀器設備,於精密定位系統的發展上,將是一套有發展潛力的精密量測技術。
摘要(英) A wavelength-modulated heterodyne speckle interferometry for measurement of in-plane displacement is proposed. The heterodyne light source was made through direct modulation of a diode laser wavelength. The in-plane motion could be measured by means of using continuous wave illumination in a length imbalanced heterodyne speckle interferometer. We developed a new phase-extraction-algorithm to calculate the optical phase variation which results from the in-plane movement. The object displacement would be determined from the measured phase variation and by the speckle interferometry theorem.
The theoretical predication shows that the resolution is about 1 pm and the sensitivity is 0.801 °/nm. From the experimental results, the range of measurement system is up to 10 μm. The maximum velocity measuring ability is 18 μm/s, and the system resolution is about 10 nm. We also discussed the measurement errors in the study, such as system error and random error.
關鍵字(中) ★ 光學量測
★ 波長調制
★ 外差干涉術
★ 散斑干涉術
★ 相位擷取演算法
★ 位移量測
關鍵字(英) ★ in-plane displacement measurement
★ speckle interferometer
★ optical metrology
★ laser diode
★ heterodyne interferometry
★ wavelength-modulated
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
符號說明 ix
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 波長調制外差干涉術之文獻回顧 2
1.2.2 散班干涉術之文獻回顧 5
1.3 研究目的 8
1.4 論文架構 9
第二章 基礎理論 10
2.1 外差干涉術 10
2.2 波長調制外差干涉術 13
2.2.1 雷射二極體 13
2.2.2 波長調制外差干涉術 17
2.3 面內位移引進相位變化 20
2.3.1 散斑干涉術 20
2.3.2 都卜勒移頻 23
2.3.3 光柵干涉術 25
2.4 小結 27
第三章 系統架構 28
3.1 元件介紹 28
3.2 波長調制外差散斑干涉儀 30
3.2.1 波長調制外差光源系統 31
3.2.2 散斑干涉系統 32
3.3 訊號解調系統 33
3.4 小結 40
第四章 實驗結果與討論 41
4.1 實驗數據 41
4.1.1 10 μm之弦波與三角波形式運動 42
4.1.2 1 μm之弦波與三角波形式運動 45
4.1.3 500 nm之弦波與三角波形式運動 48
4.1.4 100 nm之來回步階形式運動 51
4.1.5 50 nm之來回步階形式運動 53
4.1.6 10 nm之來回步階形式運動 54
4.2 實驗討論 56
4.2.1 量測重複性 56
4.2.2 解析度 57
4.2.3 靈敏度 57
4.2.4 量測速度極限 58
4.3 小結 62
第五章 誤差分析 63
5.1 系統誤差 63
5.1.1 波長變化 64
5.1.2 幾何誤差 64
5.1.3 相位誤差 66
5.2 隨機誤差 70
5.2.1 環境擾動 70
5.2.2 溫度 71
5.3 小結 71
第六章 結論與未來展望 72
6.1 結論 72
6.2 未來展望 73
Reference 75
附錄80
參考文獻 [1]. S. T. Wang, Tainano Newsletter,Vol. II, No. 17, 2003
[2]. R. Feynman, 費曼的主張,天下文化,台北市,台灣,2001。
[3]. D. C. Su, et al., “Simple two frequency laser”, Prec. Eng., Vol. 18, P. 161-163, 1996.
[4]. C.C. Wu, et al., “Optical heterodyne laser encoder with sub-nanometer resolution”, Meas. Sci. Technol, Vol. 19, P. 045305, 2008.
[5]. R. Crane, “Interference phase measurement”, Appl. Opt., Vol. 8, No. 3, pp. 538-542, 1969
[6]. G. E. Sommargren, “Optical heterodyne profilometry”, Appl. Opt., Vol. 20, pp. 610-618, 1981.
[7]. D. Pantzer, et al., “Heterodyne profiling instrument for the angstrom region”, Appl. Opt., Vol. 25, pp. 4168-4172, 1986.
[8]. D. C. Su, et al. “A heterodyne interferometer using an electro-optic modulator for measuring small displacements”, J. Opt., Vol. 27, pp. 19-23, 1996.
[9]. J. Y. Lee et al., “Heterodyne interferometer for measurement of in-plane displacement with subnanometer resolution”, Proc. SPIE, Vol. 6280, pp. 62800J, 2006
[10]. H. Kikuta et al., “Distance measurement by the wavelength shift of laser diode light”, Appl. Opt., Vol. 25, pp. 2976-2980, 1986.
[11]. E. Gelmini et al., “Tunable double-wavelength heterodyne detection interferometer for absolute distance measurements”, Opt. Lett., Vol. 19, pp. 213-215, 1994.
[12]. M. H. Chiu and D. C. Su, “Angle measurement using total-internal-reflection heterodyne interferometry”, Opt. Eng., Vol. 36, pp. 1750-1753, 1997.
[13]. M. H. Chiu and D. C. Su, “Improved technique for measuring small angle”, Appl. Opt., Vol. 36, pp. 7104-7106, 1997.
[14]. J. Y. Lee and D. C. Su, “Improved common-path optical heterodyne interferometer for measuring small optical rotation angle of chiral medium”, Opt. Comm., Vol. 256, pp. 337-341, 2005.
[15]. M. H. Chiu, et al., “Refractive index measurement based on the effects of the total internal refraction and the uses of the heterodyne interferometry”, Appl. Opt., Vol. 36, pp. 2936-2939, 1997.
[16]. D. C. Su, et al., “New type of liquid refractometer”, Opt. Eng., Vol. 37, pp. 2795-2797, 1998.
[17]. J. Y. Lee and D. C. Su, “A method for measuring Brewster’s angle by circularly polarized heterodyne interferometry”, J. Opt., Vol. 29, pp. 349-353, 1998.
[18]. Y. C. Huang et al., “Direct measurement of refractive indices of a linear birefringent retardation plate”, Opt. Comm., Vol. 133, pp. 11-16, 1997.
[19]. K. Creath, “Interferometric investigation of a diode laser source”, Appl. Opt., Vol. 24, pp. 1291-1293, 1985.
[20]. K. Tatsuno, and Y. Tsunoda, “Diode laser direct modulation heterodyne interferometer”, Appl. Opt., Vol. 26, pp. 37-40, 1987.
[21]. J. Chen, et al., “Heterodyne interferometry with a frequency-modulated laser diode”, Appl. Opt., Vol. 27, pp. 124-128, 1988.
[22]. Y. Ishii, et al., “Phase-shifting fizeau interference microscope with a wavelength-tunable laser diode”, Opt. Eng., Vol. 42, pp. 60-67, 2003.
[23]. R. Onodera and Y. Ishii, “Phase-shift-locked interferometer with a wavelength-modulated laser diode”, Appl. Opt., Vol. 24, No. 1, pp. 91-96, 2003.
[24]. S. Hosoe, “Highly precise and stable displacement-measuring laser interferometer with differential optical paths”, Prec. Eng., Vol. 17, P. 258-265, 1995.
[25]. P. P. Naulleau, et al., “Design and implementation of a vacuum compatible laser-based subnanometer-resolution absolute distance measurement system”, Opt. Eng., Vol. 44, No. 1, 013605, 2005
[26]. T. Qiu, et al., “A novel type of fiber optic displacement sensor based on Gaussian beam interference”, Opt. Commun., Vol. 234, pp. 163-168, 2004.
[27]. C. F. Kao, et al., “Double-diffraction planar encoder by conjugate optics”, Opt. Eng., Vol. 44, No. 2, 023603, 2005.
[28]. Y. Jourlin, et al., “Compact diffractive interferometric displacement sensor in reflection”, Prec. Eng., Vol. 26, pp. 1-6, 2002.
[29]. X. Wang, et al., “Two-dimensional displacement sensing using a cross diffraction grating scheme”, J. Opt. A: Pure Appl. Opt., Vol. 6, pp. 106-111, 2004.
[30]. R. K. Heilmann, et al., “Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders”, Nanotechnology, Vol. 15, pp. 504-511, 2004.
[31]. T. E. Carlsson, et al., “Method for fringe enhancement in holographic interferometry for measurement of in-plane displacements”, Proc. SPIE, Vol. 37, pp. 1845-1848, 1998.
[32]. Y. Wang, et al., “Photorefractive holographic interferometry for the measurement of object tilt and in-plane displacement”, Proc. SPIE, Vol. 4292, pp. 230-236, 2002.
[33]. S. T. Lin, “Three-dimensional displacement measurement using a newly designed moiré interferometer”, Opt. Eng., Vol. 40, No. 5, pp. 822-826, 2001.
[34]. H. J. Wang, et al., “Phase-shifting moiré interferometry based on a liquid crystal phase modulator”, Opt. Eng., Vol. 44, No. 1, pp. 015602, 2005.
[35]. N. K. Mohan, et al., “Speckle photography with BaTiO3 crystal for the measurement of in-plane displacement field distribution of distant objects”, Optic Laser Eng., Vol. 29, pp. 211-216, 1998.
[36]. R. Tripathi, et al., “In-plane displacement measurement using a photorefractive speckle correlator”, Opt. Commun., Vol. 149, pp. 355-365, 1998.
[37]. N. K. Mohan, and P. Rastogi, “Phase-shifting whole-field speckle photography technique for the measurement of in-plane deformations in real time”, Opt. Lett., Vol. 27, pp. 565-567, 2002.
[38]. J. Y. Lee, et al., “Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution”, Sens. Actuators A, Vol. 137, pp. 185-191, 2007.
[39]. R. Dandliker, J.-F. Willemin, “Measuring microvibrations by heterodyne speckle interferometry”, Opt. Lett., Vol. 6, pp. 165-167, 1981.
[40]. Y. Zhong, et al., “A differential laser Doppler system for one-dimensional in-plane motion measurement of MEMS.”, Meas., pp.623-627, 2007.
[41]. Polytec公司網站:http://www.polytec.com/ger/
[42]. M. Sargent, et al., “Theory of a Zeeman laser I” , Phys. Rev., Vol. 164, pp. 436, 1967.
[43]. 丁勝懋,雷射工程導論,中央圖書出版社,台北市,台灣,1995。
[44]. 行政院國家科學委員會,科技發展,第349期,2002
[45]. Y. Ishii, “Wavelength-Tunable Laser-Diode Interferometer”, Opt. Rev., Vol. 6, No. 4, pp. 273-283, 1999
[46]. R. S. Sirohi, F. S. Chau, Optical Methods of Measurement, Marcel Dekker, New York, 1999.
[47]. P. K. Rastogi, “Optical Measurement Techniques and Applications”, Artech House, Boston. London, 1997.
[48]. 安毓英,曾小東,光學感測與測量,五南圖書出版公司,台北市,2004。
[49]. J. W. Goodman, Introduction to Fourier Optics, McGraw-Hill, New York, 1996.
[50]. M. C. Hutley, Diffraction Gratings, Academic Press Limited, London, 1982.
[51]. 陳輝毓,「外差光學式光柵干涉儀之研究」,國立中央大學機械工程研究所碩士論文,桃園縣,台灣,2006。
[52]. 李貴宇,「波長調制外差式光柵干涉儀之研究」,國立中央大學光機電工程研究所碩士論文,桃園縣,台灣,2007。
[53]. 丁均怡等,光學元件精密製造與檢測,財團法人國家實驗研究院儀器科技研究中心,新竹市,台灣,2007。
[54]. C. M. Klimcak, and J. C. Camparo, “Photothermal wavelength modulation of a diode laser”, J. Opt. Soc. Am. B, Vol. 5, No. 2, 1988.
[55]. X. F. Wang, and X. Z. Wang, “Photothermal modulation of laser diode wavelength: application to sinusoidal phase-modulation interferometer for displacement measurements” , Opt. Laser Tech., pp. 559-564, 1999.
指導教授 李朱育(Ju-yi Lee) 審核日期 2008-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明