博碩士論文 953208002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.141.31.209
姓名 陳又維(Yu-wei Chen)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 薄矽膠層吸附床之性能研究
(Experimental investigation of an adsorber with thin silica gel layer)
相關論文
★ 不同集管型式多流道熱交換器流動分佈研究★ 冷媒R-245fa於不同石墨烯塗佈鰭管上凝結熱傳性能之實驗分析
★ 低溫熱管設計及性能研究★ 吸附式空調系統之微鰭板蒸發/冷凝器凝結熱傳增強性能研究
★ 平板震盪型熱管均熱片研究★ 小型吸附式空調系統研究
★ 變頻空調機在不同環境下之控制策略★ 水-空氣在板式熱交換器內的流動觀察
★ 以紅外線熱像分析冷媒R410A在板式熱交換器內之蒸發熱傳性能★ 不同粒徑微多孔表面在狹小空間內之池沸騰熱傳性能研究
★ 梯形流道表面之池沸騰熱傳性能研究★ 石墨烯塗佈銅管外凝結熱傳性能研究
★ 超臨界R-410A與R-32熱傳及壓降性能之研究★ 製冷劑R-245fa在石墨烯塗層中的冷凝傳熱整體翅片管
★ 不同性能風扇對熱傳增強鰭片之性能研究★ 使用FAM Z05沸石對水之小型吸附式空調性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要目的為設計一小型化、高性能之吸附床,以供未來固體吸附式製冷系統使用。吸附床設計應用微熱交換器概念,改變以往大管徑設計方式,而選用小管徑熱交換器設計;並在微熱交換器表面製作出薄矽膠層,以提高反應速率,期望可縮小系統體積以及降低整體製作成本目的,而完成一高性能低成本之空調製冷系統。
由實驗結果可發現,吸附床在吸附初期具有最大之冷媒吸附速率;在30 °C 吸附溫度、吸附床腔體內冷媒蒸汽壓為8.55 torr 時,第一分鐘有最大吸附速率約0.567 g/s。當吸附床以80 °C 脫附溫度、吸附床腔體內冷媒蒸汽壓為39.53 torr 時,脫附四分鐘後有最大脫附速率約0.109 g/s。吸附溫度與脫附溫度對吸附床吸附與脫附性能有顯著影響。當吸附溫度由40 °C 改變為20 °C 時,吸附速率可提升約32%;脫附溫度由60 °C改變為80 °C 時,脫附速率可提升約142%。
摘要(英) The main purpose of this research is to design a compact adsorber with high performance, which will be applied to a solid adsorption cooling system. A test system is build up in order to measure the adsorption and desorption performance of the test section.
Micro-heat exchanger concept is applied to design the adsorber heat exchanger. The smaller tube size is chosen to replace the bigger tube which is widely used in the former research. Meanwhile, a thin-layer coating technique
is used to develop a adsorber—adsorbent is directly coated on the heat exchanger surface.This thin-layer coated adsorber will accelerate the response time including heat transfer and mass transfer. So this micro-heat exchanger design with a thin-layer coated adsorber is expected to reduce the whole system volume and enhance the performance to decrease the cost of adsorption cooling
system.
The test results show that adsorption/desorption temperature has significant effect on performance. When adsorption time is 1 minute, the adsorber has the maximum adsorption rate— 0.567 g/s. When desorption time is 4 minute, the adsorber has maximum desorption rate— 0.109 g/s.
關鍵字(中) ★ 矽膠-水
★ 吸附式製冷
★ 塗佈式吸附床
★ 薄膜鍍層
★ 微熱交換器
關鍵字(英) ★ thin-coating layer
★ micro-heat exchanger
★ silica gel-water
★ adsorption cooling
★ coated adsorber
論文目次 目錄
頁次
摘要........................................................................................................................ i
Abstract .................................................................................................................ii
致謝......................................................................................................................iii
目錄...................................................................................................................... iv
表目錄.................................................................................................................. vi
圖目錄.................................................................................................................vii
符號說明.............................................................................................................. ix
第一章 前言......................................................................................................... 1
1.1 研究動機.............................................................................................. 1
1.2 研究目的.............................................................................................. 2
第二章 文獻回顧................................................................................................. 6
2.1 簡介...................................................................................................... 6
2.2 工作配對.............................................................................................. 7
2.3 吸附床熱傳增強.................................................................................. 8
2.3.1 填充式吸附床......................................................................... 10
2.3.2 固化式吸附床/劑.................................................................... 12
2.3.3 塗佈式吸附床......................................................................... 14
2.4 結論與研究方向................................................................................ 16
第三章 實驗方法............................................................................................... 30
3.1 塗佈式吸附床設計製作.................................................................... 30
3.1.1 等溫吸附平衡曲線................................................................. 30
3.1.2 理想循環吸附量..................................................................... 30
3.1.3 吸附式製冷熱力循環圖......................................................... 31
3.1.4 熱交換器尺寸設計................................................................. 31
3.1.5 矽膠塗佈製作步驟................................................................. 32
3.1.6 吸附床熱交換器組裝步驟..................................................... 33
3.2 實驗系統與量測儀器........................................................................ 34
3.2.1 實驗系統................................................................................. 34
3.2.2 量測儀器................................................................................. 34
3.2.3 吸附床真空腔體設計............................................................. 35
3.3 實驗步驟............................................................................................ 36
3.3.1 系統抽真空及冷媒填充......................................................... 36
3.3.2 吸附實驗方法......................................................................... 37
3.3.3 脫附實驗方法......................................................................... 38
3.4 數據換算............................................................................................ 39
3.4.1 製冷率..................................................................................... 39
3.4.2 加熱率..................................................................................... 40
第四章 實驗結果與討論................................................................................... 58
4.1 實驗系統暫壓測試............................................................................ 58
4.2 吸附過程工作流體溫度變化情形.................................................... 59
4.3 吸附量隨時間變化情形.................................................................... 59
4.4 脫附過程工作流體溫度變化情形.................................................... 60
4.5 脫附量隨時間變化情形.................................................................... 61
第五章 結論....................................................................................................... 80
參考文獻............................................................................................................. 84
附錄、實驗誤差分析......................................................................................... 87
參考文獻 Bjurstrom, H., Karawacki, E., and Carlsson, B., 1984, “Thermal conductivity of a microporous particulate medium: moist silica gel”, International Journal of Heat and Mass Transfer, Vol. 27, pp. 2025−2036.
Boelman, E. C., Saha, B. B., and Kashiwagi, T., 1995, “Experimental investigation of a silica gel−water adsorption refrigeration cycle−The influence of operating conditions on cooling output and COP”, ASHRAE Transactions, Vol. 101(2), pp. 358−366.
Cacciola. G., and Restuccia, G., 1994, “Progress on adsorption heat pump”, Heat Recovery Systems and CHP, Vol. 4, pp. 409−420.
Chang, K. S., Chen, M. T., and Chung, T. W., 2005, “Effects of the thickness and particle size of silica gel on the heat and mass transfer performance of a silica gel-coated bed for air−conditioning adsorption systems”, Applied Thermal Engineering, Vol. 25, pp. 2330−2340.
Chang, W. S., Wang, C. C., and Shieh, C. C., 2007, “Experimental study of a solid adsorption cooling system using flat−tube heat exchangers as adsorption bed”, Applied Thermal Engineering, Vol. 27, pp. 2195−2199.
Eun, T. H., Song, H. K., Han, J. H., Lee, K. H., and Kim, J. N., 2000, “Enhancement of heat and mass transfer in silica−expanded graphite composite blocks for adsorption heat pumps: Part I. Characterization of the composite blocks”, International Journal of Refrigeration, Vol. 23, pp.64−73.
Eun, T. H., Song, H. K., Han, J. H., Lee, K. H., and Kim, J. N., 2000, “Enhancement of heat and mass transfer in silica−expanded graphite composite blocks for adsorption heat pumps: Part II. Cooling system using the composite blocks”, International Journal of Refrigeration, Vol. 23, pp.74−81.
Freni, A., Russo, F., Vasta, S., Tokarev, M., Aristov, Y. I., and Restuccia, G., 2007, “An advanced solid sorption chiller using SWS−1L”, Applied Thermal Engineering, Vol. 27, pp. 2200−2204.
Guilleminot, J. J., Choisier, A., Chalfen, J. B., Nicolas, S., and Reymoney, J. L., 1993, “Heat transfer intensification in fixed bed adsorbers”, Heat Recovery Systems and CHP, Vol. 13, pp. 297−300.
Gurgel J. M., and Kluppel R. P., 1996, “Thermal conductivity of hydrated silica−gel”, The Chemical Engineering Journal, Vol. 61, pp. 133−138.
Kubota, K., Ueda, T., Fujisawa, R., Kobayashi, J., Watanabe, F., Kobayashi, N., and Hasatani, M., 2008, “Cooling output performance of a prototype adsorption heat pump with fin−type silica gel tube module”, Applied
Thermal Engineering, Vol. 28, pp. 87−93.
Liu, Y. L., Wang, R. Z., and Xia, Z. Z., 2005, “Experimental performance of a silica gel−water adsorption chiller”, Applied Thermal Engineering, Vol. 25,
pp. 359−375.
Meunier, F., 1993, “Solid sorption: an alternative to CFCs”, Heat Recovery Systems and CHP, Vol. 13, No. 4, pp. 289−295.
Pino, L., Aristov, Yu. I., Cacciola, G., and Restuccia, G., 1996, “Composite materials based on zeolite 4A for adsorption heat pumps”, Adsorption, Vol.3, pp. 33−40.
Restuccia, G., and Cacciola, G., 1999, “Performance of adsorption system for ambient heating and air conditioning”, International Journal of Refrigeration, Vol. 22, pp. 18−26.
Restuccia, G., Freni, A., and Maggio, G., 2002, “A zeolite−coated bed for air conditioning adsorption systems: parametric study of heat and mass transfer by dynamic simulation”, Applied Thermal Engineering, Vol. 22,
pp. 619−630.
Restuccia, G., Freni, A., Vasta, S., and Aristov, Y., 2004, “Selective water sorbent for solid sorption chiller: experimental results and modeling”, International Journal of Refrigeration, Vol. 27, pp.284−293.
Restuccia, G., Freni, A., Russo, F., and Vasta, S., 2005, “Experimental investigation of a solid adsorption chiller based on a heat exchanger coated with hydrophobic zeolite”, Applied Thermal Engineering, Vol. 25,
pp.1419−1428.
Wang, K., Wu, J. Y., Wang, R. Z., Wang, L. W., 2006, “Composite adsorbent of CaCl2 and expanded graphite for adsorption ice maker on fishing boats”, International Journal of Refrigeration, Vol. 29, pp. 199−210.
Wang, L. J., Zhu, D. S., and Tan, Y. K., 1999, “Heat transfer enhancement of the adsorber of an adsorption heat pump”, Adsorption, Vol. 5, pp.279−286.
Wang, R. Z., and Oliveira, R. G., 2006, “Adsorption refrigeration−An efficient way to make good use of waste heat and solar energy”, Progress in Energy and Combustion Science, Vol. 32, pp. 424−458.
Yang, G. Z., Xia, Z. Z., Wang, R. Z., Keletigui, D., Wang, D. C., Dong, Z. H., and Yang, X., 2006, “Research on a compact adsorption room air conditioner”, Energy Conversion & Management, Vol. 47, pp. 2167−2177.
Zhu, D. S., and Wang, S. W., 2002, “Experimental investigation of contact resistance in adsorber of solar adsorption refrigeration”, Solar Energy, Vol.73, No. 3, pp. 177−185.
謝鎮州、張文師、王智正、唐震宸,2004,「運用工業廢熱之固體吸附式製冷系統」,化工技術,第12 卷第四期。
王智正、謝鎮州、張文師、唐震宸,2004,「熱能驅動之固體吸附式製冷實驗研究」,中國機械工程學會第二十一屆全國學術研討會。
劉瑋輯,2005,微熱交換器之設計與性能測試,國立中央大學機械工程研究所碩士論文,中壢。
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2010-3-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明