博碩士論文 953208007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.136.18.48
姓名 董成祥(Cheng-hsiang Tung)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 電解水產氫之電解液流場效應分析
(Study on Flow Field of Electrolyte of Water Electrolysis)
相關論文
★ 金屬粉末射出成型毛細吸附脫脂模擬★ 燃料電池複合式流道設計與膜電極組製程
★ 氣態鋅與水蒸氣混合之流場與反應爐參數分析★ 利用化學水浴沉積法製作Ni-ZnO光電極之研究
★ 以化學水浴法製備AgInS2可見光光電極及其摻雜銅之研究★ 高溫高壓之電解水產氫效率分析
★ 超音波場下電解水產氫之效應分析★ 以化學水浴法製備氧化鋅光電極薄膜之研究
★ 以化學浴沉積法製備四元化合物光電極薄膜之研究★ 利用化學水浴法鍍製二氧化鈦光電極薄膜之研究
★ 以化學浴沉積法製備Cu-In-S化合物光電極薄膜之研究★ 以化學浴沉積法製備β-In2S3化合物光電極薄膜之研究
★ 以化學浴沉積法製備不同結構氧化鋅光電極薄膜之研究★ 電解水產氫中極化作用之分析與研究
★ 磁場對水電解產氫效率增益之機制研究★ 二氧化銥/氧化還原石墨烯複合觸媒之水電解效能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 為了探討電解液流場對電解的效應,以磁石與沉水馬達使1m的KOH電解液產生一渦流與管流,搭配自行製作的電解槽進行電解,以實驗探討流場對電解時產生的影響。
渦流部分以0RPM~1100RPM的不同程度渦流,搭配電解電壓2V~5V。實驗結果顯示最大電流密度提升率約3.4%,發生在轉速100RPM時。轉速100RPM~轉速1100RPM之間電流密度不增反減,但在轉速400RPM會有ㄧ電流密度最低值。
管流部分以電解液體積流率0ml/s~65ml/s,搭配電解電壓2V~5V及正向流向與側向流向。由實驗結果可以知道,最大電流密度提升率約為23%,且可以發現任一電流密度都有最佳電解液體積流率,此外正向流向與側向流向無明顯差異。
渦流較管流最大差異在於產生的氣體無法順利排出電解槽內,因此形成比管流大上許多氣體造成的極化現象。
摘要(英) In order to probe into the effect of electrolyte fluid field on electrolysis, magnetite and water pump are used to let 1M KOH electrolyte generating vortex and internal flow in the electrobath. The experimental results are discussed to understand the interaction between electrolyte fluid field and electrolysis.
At first, in the part of vortex flow, the vortex are ranged among 0RPM~1100RPM and the applied voltages are ranged among 2V~5V.When the rotation rate is 100RPM, the experimental results show that there is a maximum current density enhancement about 3.4%.In addition, as the rotation rate is among 100RPM and 1100RPM,the current density decreases. Moreover, at the rotation rate of 400RPM, the current density is minimum.
In the part of internal flow, the circulating rates of electrolyte are ranged among 0ml/s~65ml/s and the applied voltages are ranged among 2v~5v. The electrolyte flows in either parallel or normal to the electrodes. The experimental results show that there is a maximum current density enhancement about 23%, and the best circulating rate of electrolyte occurres for every current density. There are no difference in current density between parallel flow and crossed flow.
The biggest difference between vortex flow and internal flow is that the circulation generated by the vortex will drag the electrolysis gases from escaping from the electrobath, and this causes serious polarization phenomenon that does not occur in internal flow.
關鍵字(中) ★ 渦流
★ 管流
★ 極化
★ 電流密度
★ 水電解
關鍵字(英) ★ polarization
★ vortex
★ internal flow
★ current densit
論文目次 摘要 I
ABSTRACT II
目錄 III
表目錄 VI
圖目錄 VII
符號說明 X
第一章 緒論 1
1-1前言 1
1-2產氫 3
1-3文獻回顧 4
1-4研究目的與動機 6
第二章 理論基礎 7
2-1電解水製氫之基本原理 7
2-2電解電壓 8
2-2-1電解液溫度對電解反應之影響 9
2-3法拉第定律 10
2-4吉布斯自由能 10
2-5極化作用 11
2-5-1濃度極化 11
2-5-2活性極化 12
2-5-3電阻極化 14
2-6電導度 15
第三章 實驗裝置與步驟 16
3-1實驗簡述 16
3-2實驗藥品及材料 16
3-2-1實驗藥品 16
3-2-2實驗材料 17
3-3實驗儀器 17
3-4實驗架設 18
3-5實驗變因 19
3-6實驗步驟 19
3-7注意事項 20
第四章 結果與討論 21
4-1前言 21
4-2管內渦流 21
4-2-1轉速探討 21
4-2-2渦流垂直方向力之探討 24
4-2-3電壓探討 25
4-3管流 26
4-3-1體積流率探討 26
4-3-2流向探討 29
4-4管流與渦流的比較 30
4-5無因次輔助設計 31
第五章 結論與建議 33
5-1結論 33
5-2未來研究方向與建議 34
參考文獻 35
表 38
圖 41
參考文獻 1. P. Ridge ,“Hydrogen manufacture by electrolysis,thermal decomposition
and unusual techniques,”Noyes Data corporation,New Jersey,M. S.Casper (1978).
2. C.A.Schug ,“Operational characterisyics of high-pressure ,high-efficiency water-hydrogen-electrolysis,” International Journal of Hydrogen Energy, Vol.23,pp.1113-1120(1998).
3. W.Kreuter and H.Homann , “Electrolysis:The important energy transformer in a world of sustainable energy ,” International Journal of Hydrogen Energy, Vol.23,pp.661-666(1998).
4. R. Mosdale and S. Srinivasan,” Analysis of performance and of water and thermal management in proton exchange membrane fuel cells,” Electrochimica Acta,Vol.40,pp.413-421(1995).
5. P.A. Lheman , C.E.Chmberlin, G , Pauletto and M.A.Rocheleau,
“Operating experience with a photovoltaic-hydrogen energy system,”
International Journal of Hydrogen Energy,Vol.22,pp.465-470(1997).
6. D.Lj. Stojić, M.P. Marčeta, S.P. Sovilj, and Š.S. Miljanić, “Hydrogen generation from water electrolysis—possibilities of energy saving,” Journal of Power Sources,Vol.118,pp.315-319(2003).
7. N. Nagai, M. Takeuchi, T. Kimura, and T. Oka,” Existence of optimum space between electrodes on hydrogen production by water electrolysis,” International Journal of Hydrogen Energy,Vol.28,pp.35-41(2003).
8. R.F. de Souza, J.C. Padilha, R.S. Gonçalves, and J. Rault-Berthelot,” Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis,” Electrochemistry Communications,Vol.8, pp.211-216(2006).
9. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, and H. Tributsch, “Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting,” International Journal of Hydrogen Energy,Vol.26,pp.653-659(2001).
10. S. Licht, “Solar water splitting to generate hydrogen fuel—a photothermal electrochemical analysis,” International Journal of Hydrogen Energy,Vol.30, pp.459-470(2005).
11. R.L. LeRoy, M.B.I. Janjua, R. Renaud, and U. Leuenberger, “Analysis of time-variation effects in water electrolyzers,” J. Electrochem. Soc., pp.1674-1682(1979).
12. R.L. LeRoy, and C.T. Bowen, ”The thermodynamics of aqueous water electrolysis,” J. Electrochem.,pp.1954-1962(1980).
13. K. Onda, T. Kyakuno, K. Hattori, and K. Ito, “Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis,” Journal of Power Sources,Vol.132,pp.64-70(2004).
14. J. Koryta, J. Dvořák, and L. Kavan, Principles of electrochemistry, second edition, John Wiley, New York(1993).
15. A. Roy, S. Watson, and D. Infield, ”Comparison of electrical energy efficiency of atmospheric and high-pressure electrolysers,” International Journal of Hydrogen Energy,Vol.31,pp.1964-1979(2006).
16. J.M.Gras and P.Spiteri , “Corrosion of stainless steels and nickel based alloys for alkaline water electrolysis,” International Journal of Hydrogen Energy,Vol.18,pp.561-566(1993).
17. V.D.Stankovic , R.Grujic, A.A.Wragg, ”Water electrolysis and pressure drop behaviour in a three-dimensional electrode,” Journal of applied electrochemistry,Vol.28,pp.321-327(1998).
18. Richa Kothari, D. Buddhi, R.L.Sawhney, ”Optimization of electrolytic input for the production of hydrogen, ” International Journal of Hydrogen Energy,Vol.31,pp.2329-2336(2006).
19.毛宗強,氫能-21世紀的綠色能源,新文京開發出版社(2008)。
20.田福助,電化學基本原理與應用,五洲出版社(2004)。
指導教授 洪勵吾(Lih-Wu Hourng) 審核日期 2008-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明