參考文獻 |
[1] Carrette, L., Friedrich, K. A., and Stimming, U., “Fuel cells – fundamentals and applications”, Fuel Cells, Vol. 1, pp. 5-39 (2001)
[2] Gergor, H. Fuel cell technology handbook. CRC Press(2003).
[3] Larminie, J., and Dicks, A., Fuel Cell Systems Explained, John Wiely & Sons, Ltd, Chichester, England (2000).
[4] Hecht, E. S., Gupta, G. K., Zhu, H., Dean, A. M., Kee, R. J. and Deutschmann, O. “Methane reforming kinetics within a Ni–YSZ SOFC anode support,” App. Catal., A: Gen. 295, 40-51 (2005).
[5] Singhal, S. C. and Kendall, K. High temperature solid oxide fuel cells: fundamentals, design and applications, Elsevier, Kidlington (2003).
[6] Stambouli, A. B. and Traversa, E. “Solid Oxide Fuel Cells (SOFCs): a Review of an Environmentally Clean and Efficient Source of Energy,” Renew. Sust. Energy Rev. 6, 433-455 (2002).
[7] Larminie, J. and Dicks, A. Fuel Cell Systems Explained. John Wiely & Sons, Ltd, Chichester, England (2000).
[8] O’Hayre, R., Barnett, D.M. and Prinzc, F.B. “The Triple Phase Boundary - A Mathematical Model and Experimental Investigations for Fuel Cells,” J. Electrochem. Soc. 152(2), A439-A444 (2005).
[9] Mizusaki, J., Tagawa, H., Tsuneyoshi, K. and Sawata, A. “Reaction Kinetics and Microstructure of the Solid Oxide Fuel Cells Air Electrode La0.6Ca0.4MnO3/YSZ,” J. Electrochem. Soc. 138, 1867-1873 (1991).
[10] Deng, X. and Petric, A. “Geometrical modeling of the triple-phase-boundary in solid oxide fuel cells,” J. Power Sources 140, 297-303 (2005).
[11] Pyke, S. H., Howard, P. J. and Leah, R. T. “Planar SOFC technology : stack design and development for lower cost and manufacturability,” DTI research report, DTI/Pub URN 02/1350 (2002).
[12] Jung, H.Y., Choi, S.H., Kim, H., Son, J.W., Kim, J., Lee, H.W. and Lee J.H. “Fabrication and performance evaluation of 3-cell SOFC stack based on planar 10 cm×10 cm anode-supported cells.” J. Power Sources 159, 478-483 (2006).
[13] Gregor, H. Fuel cell technology handbook. CRC Press (2003).
[14] Vielstich, W., Lamm, A. and Gasteiger, H. A. Handbook of Fuel Cells: Fundamentals Technology and Applications. John Wiely & Sons, Ltd, Chichester, England (2003).
[15] Yakabe, H., Ogiwara, T., Hishinuma, M. and Yasuda, I. “3-D model calculation for planar SOFC,” J. Power Sources 102, 144-154 (2001).
[16] de Haart, L. G. J., Vinke, I. C., Janke, A., Ringel, H. and Tietz, F. In: Yokpawa, H., and Singhal, S. C., (Eds.), Solid Oxide Fuel Cells (SOFC VII), Electrochem. Soc. Proc. The Electrochemical Society, Pennington, New Jersey, PV2001-16, 111 (2001).
[17] Hwang, J. J., Chen, C. K. and Lai, D. Y. “Detailed characteristic comparison between planar and MOLB-type SOFCs,” J. Power Sources 143, 75-83 (2005).
[18] Schmidt, M. The Hexis Project : Decentralised electricity generation with waste heat utilisation in the household. Fuel Cells Bulletin. 1, 9-11 (1998).
[19] Gardner, F. J., Day, M. J., Brandon, N. P., Pashley, M. N. and Cassidy, M. “SOFC technology development at Rolls-Royce,” J. Power Sources 86, 122-129 (2000).
[20] Thijssen, Jan H.J.S. and Thijssen, J. “The impact of scale-up and production volume on SOFC manufacturing cost,” NETL Report, http://www.netl.doe.gov/technologies/coalpower/fuelcells/seca/refshelf.html (2007).
[21] 顏正和,平板式固態氧化物燃料電池雙極板之流道設計與流場觀測,國立中央大學機械工程系,碩士論文,2004年。
[22] Huang, C.M., Shy, S.S. and Lee, C.H. “Experimental and numerical studies on flow uniformity in interconnects and is influence to a single planar solid oxide fuel cell,” ECS Transaction, vol. 7, no. 1, 1849-1859 (2007).
[23] Bassiouny, M. K. and Martin, H. “Flow distribution and pressure drop in plate heat exchangers I; U-type arrangement,” Chem. Engin. Sci. 39, 693-700 (1984).
[24] Bassiouny, M. K. and Martin, H. “Flow distribution and pressure drop in plate heat exchangers I; Z-type arrangement,” Chem. Engin. Sci. 39, 701-704 (1984).
[25] Boersma, R. J. and Sammes, N. M. “Computational analysis of the gas-flow distribution in solid oxide fuel cell stacks,” J. Power Sources 63, 215-218 (1996).
[26] Boersma, R. J. and Sammes, N. M. “Distribution of gas flow in internally manifolded solid oxide fuel cell stacks,” J. Power Sources 66, 41-45 (1997).
[27] Kee, R. J., Korada, P., Walters, K. and Pavol, M. “A generalized model of the flow distribution in channel networks of planar fuel cells,” J. Power Sources 109, 148-159 (2002).
[28] Maharudrayya, S., Jayanti, S. and Deshpande, A. P. “Flow distribution and pressure drop in parallel-channel configurations of planar fuel cells,” J. Power Sources 144, 94-106 (2005).
[29] Kim, S., Choi, E. and Cho, Y. I. “The effect of header shapes on the flow distribution in a manifold for electronic packaging applications,” Int. Comm. Heat Mass Transfer 22, 329-341 (1995).
[30] Recknagle, K. P., Williford, R. E., Chick, L. A., Rector, D. R. and Khaleel, M. A. “Three-dimensional thermo-fluid electrochemical modeling of planar SOFC stacks,” J. Power Sources 113, 109-114 (2003).
[31] Chyou, Y. P., Chung, T. D., Chan, J. S. and Shie, R. F. “Integrated thermal engineering analyses with heat transfer at periphery of planar solid oxide fuel cell,” J. Power Sources 139, 126-140 (2005).
[32] Iwata, M., Hikosaka, T., Morita, M., Iwanari, T., Ito, K., Onda, K., Esaki, Y., Sakaki, Y. and Nagata, S. “Performance analysis of planar-type unit SOFC considering current and temperature distributions,” Solid State Ionics 132, 297-308 (2000).
[33] Hirata, H. and Hori , M. “Gas-flow uniformity and cell performance in a molten carbonate fuel cell stack,” J. Power Sources 63, 115-120 (1996).
[34] Huang, W. L. and Zhu, Q. “Flow distribution in U-type layers or stacks of planar fuel cells,” J. Power Sources 178, 353-362 (2008).
[35] Bengoa, C., Montillet, A., Legentilhomme, P. and Legrand, J. “Flow visualization and modelling of a filter-press type electrochemical reactor,” J. Appl. Electrochem. 27, 1313-1322 (1997).
[36] Dohle, H., Jung, R., Kimiaie, N., Mergel J. and Muller, M. “Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells-experiments and simulation studies,” J. Power Sources 124, 371-384 (2003).
[37] Barreras, F., Lozano, A., Vali˜no, L., Mar´ın, C. and Pascau, A. “Flow distribution in a bipolar plate of a proton exchange membrane fuel cell: experiments and numerical simulation studies,” J. Power Sources 144, 54-66 (2005).
[38] Maharudrayya, S., Jayanti, S. and Deshpande, A. P. “Pressure drop and flow distribution in multiple parallel-channel configurations used in proton-exchange membrane fuel cell stacks,” J. Power Sources 157, 358-367 (2006).
[39] Chen, C. H., Jung, S. P. and Yen, S. C. “Flow distribution in the manifold of PEM fuel cell stack,” J. Power Sources 173, 249-263 (2007). |