博碩士論文 953209005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.188.95.170
姓名 林峻右(Chun-Yu Lin)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 Mg3MnNi2對Mg2Ni合金電化學與吸放氫特性之影響
(Effect of Mg3MnNi2 on the electrochemical and hydrogenation properties of Mg2Ni alloy)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗將利用恆溫揮發鑄造法(Isothermal Evaporation Casting Process,IECP)製備不同比例之 Mg3MnNi2-Mg2Ni合金系統,觀察Mg3MnNi2相(β相)對Mg2Ni相(γ相)電化學與吸放氫特性之影響。
  由ICP成分分析與X光繞射分析顯示IECP製程穩定,可製備不同比例之Mg3MnNi2-Mg2Ni合金系統。藉由放電曲線與PCI曲線分析,發現HCP-Mg2Ni相(γ相)與FCC-Mg3MnNi2相(β相)之充放電過程中氧化還原電位相近,吸放氫反應壓力也相似。由XPS分析得知,添加β相於Mg2Ni(γ相)合金中,可減緩Mg2Ni合金在強鹼電解液環境下Mg(OH)2之生成速度,進而提升Mg2Ni合金放電電容量、放電效率與放電循環壽命。
  由放電循環壽命與吸放氫速率測試結果也發現Mg3MnNi2相(β相)較Mg2Ni相(γ相)不易被強鹼電解液所腐蝕且不易氫化,使其添加於Mg2Ni合金時,造成Mg2Ni之電化學特性則獲得改善,但吸放氫速率隨Mg3MnNi2相(β相)添加量增加而遞減。
摘要(英) Mg3MnNi2-Mg2Ni alloy systems with different ratio is produced by an innovative method, isothermal evaporation casting process (IECP) in this work. The effects of Mg3MnNi2(β phase) on the electrochemical and hydrogenation properties of Mg2Ni(γ phase) alloy were investigated.
Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and X-ray diffraction (XRD) analyses demonstrate that mass production for Mg3MnNi2-Mg2Ni alloy systems with different ratio was successfully fabricated by IECP. It is observed that HCP-Mg2Ni (γ phase) and FCC-Mg3MnNi2 (β phase) have nearly oxidation/reduction potential and their absorption/ desorption pressure plateaus are similar. It is also found by X-ray photoelectron spectroscopy (XPS) that addition Mg3MnNi2 in Mg2Ni alloy reduced the passive Mg(OH)2 layer formation and led to discharge capacity, discharge efficiency and discharge cycle life improving.
It is found that it is difficult to corroded in alkaline electrolyte and hydrogenation for Mg3MnNi2 in comparison with Mg2Ni. It is caused Mg3MnNi2 addition in Mg2Ni resulted in an improvement for electrochemical properties and a deceleration for hydriding-dehydriding rate.
關鍵字(中) ★ 吸放氫速率
★ IECP製程
★ Mg基儲氫電極
關鍵字(英) ★ hydriding-dehydriding rate
★ Mg-based electrode
★ IECP method
論文目次 中文摘要................................................i
英文摘要 ..............................................ii
誌 謝 .............................................iii
目 錄 ..............................................iv
圖 目 錄 ..............................................vi
表 目 錄.............................................viii
一、 前言 ........................................1
二、 文獻回顧 ....................................4
2-1 氫能源之開發.................................4
2-2 氫能經濟系統簡介 ............................4
2-3 儲氫合金簡介.................................6
2-4 儲氫合金吸放氫原理介紹 ......................7
2-4-1 動力學性質 ..................................7
2-4-2 熱力學性質 ..................................9
2-5 鎳氫電池簡介................................13
2-5-1 鎳氫電池原理................................13
2-5-2 鎳氫電池合金選用 ...........................14
三、 實驗步驟與方法 .............................15
3-1 鑄態合金製備 ...............................15
3-2 合金微結構分析 .............................15
3-2-1 X光繞射分析(XRD) ...........................15
3-2-2 電子微探針分析(EPMA) .......................16
3-2-3 合金縱深分析 ...............................16
3-3 電化學與吸放氫特性測試 ....................16
3-3-1 放電電容量與放電循環壽命測試...............16
3-3-2 循環伏安法測試 ............................17
3-3-3 PCI (Pressure-composition-isothermal)曲線與
吸放氫速率測試 ............................17
四、 結果與討論 ................................20
4-1 鑄態合金製備 ..............................20
4-2 合金微結構分析 ............................21
4-3 電化學與吸放氫特性測試 ....................25
4-3-1 放電電容量測試 ............................25
4-3-2 循環伏安法測試 ............................26
4-3-3 放電循環壽命測試 ..........................28
4-3-4 PCI (Pressure-composition-isothermal)曲線與
吸放氫速率測試 ............................31
五、 結論 ......................................38
六、 未來工作 ..................................39
七、 參考文獻 ..................................40
參考文獻 [1] G. Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, Journal of Alloys and Compounds, Vol.293-295, pp.877–888, 1999.
[2] J.L. Luo, N. Cui, “Effects of microencapsulation on the electrode behavior of Mg2Ni-based hydrogen storage alloy in alkaline solution”, Journal of Alloys and Compounds, Vol.264, pp.299-305, 1998.
[3] N. Cui, et al., “Synthesis and electrode characteristics of the new composite alloys Mg2Ni-xwt.% Ti2Ni”, Journal of Alloys and Compounds, Vol.240, 1996, pp.229-234.
[4] N. Cui, et al., “Characteristics of magnesium-based hydrogen -storage alloy electrodes”, Journal of power sources, Vol.55, pp.263-267, 1995.
[5] N.H. Goo, et al., “Mechanism of rapid degradation of nanostructured Mg2Ni hydrogen storage alloy electrode synthesized by mechanical alloying and the effect of mechanically coating with nickel” , Journal of Alloys and Compounds, Vol.288, pp.286–293, 1999.
[6] J.S. Kim, et al., “Effects of F-treatment on degradation of Mg2Ni electrode fabricated by mechanical alloying”, Journal of Power Sources, Vol.104, pp.201-207, 2002.
[7] C. Iwakura, et al., “Hydriding and electrochemical characteristics of a homogeneous amorphous Mg2Ni-Ni composite”, Journal of Alloys and Compounds, Vol.270, pp.142–144, 1998.
[8] J. Chen, et al., “Mg Ni-based hydrogen storage alloys for metal hydride electrodes”, Journal of Alloys and Compounds, Vol.293-295, pp.675-679, 1999.
[9] A. Gasiorowski, et al., “Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M = Mn, Al)”, Journal of Alloys and Compounds, Vol.364, pp.283-288, 2004.
[10] R.V. Denys, et al., “Structure and hydrogenation properties of new Mg-based alloys”, Proc IX Int Conf Hydrogen Mater Science & Chemistry of Carbon Nanomaterial, Sevastopol, Ukraine, 2005.
[11] G..L. Lu, et al., “Study on the phase composition of Mg2-xMxNi (M=Al, Ti) alloys”, Journal of Alloys and Compounds, Vol.321, pp.L1-L4, 2001.
[12] H. Inoue, et al. ,“Effect of ball-milling on electrochemical and physicochemical characteristics of crystalline Mg2Ni alloy”, Electrochimica Acta, Vol.43, pp.2215–2219, 1998.
[13] R.V. Denys, et al., “New Mg-M-Ni (M=Mn,Ti,Al) alloys as efficient hydrogen storage materials”, Proc X Int Conf Hydrogen Mater Science & Chemistry of Carbon Nanomaterial, Sudak, Ukraine, 2007.
[14] C.W. Hsu, et al., “Mass production of Mg2Ni alloy bulk by isothermal evaporation casting process” , International Journal of Hydrogen Energy, Vol.32, pp.4907-4911, 2007.
[15] N. Khan, et al., “Fossil fuels, new energy sources and the great energy crisis”, Renewable and Sustainable Energy Reviews, in press, 2008.
[16] B.W. Ang, “Monitoring changes in economy-wide energy efficiency: From energy–GDP ratio to composite efficiency index”, Energy Policy, Vol.34, pp.574-582, 2006.
[17] W.C. Lattina, V.P. Utgikar, “Transition to hydrogen economy in the United States:A2006 status report”, International Journal of Hydrogen Energy, Vol.32, pp.3230-3237, 2007.
[18] G. Crabtree, et al., “The hydrogen economy”, Physics Today, Vol.57, pp.39-44, 2004.
[19] G. Marban, T. Valdes-Solis, “Towards the hydrogen economy? ”, International Journal of Hydrogen Energy, Vol.32, pp.1625-1637, 2007.
[20] A. Zuttel, “Materials for hydrogen storage”, Materials Today, Vol.6, pp.24-33, 2003.
[21] S.A. Sherif, et al., “Wind energy and the hydrogen economy—review of the technology”, Solar Energy, Vol.78, pp. 647-660, 2005.
[22] W. Iwasaki, “A consideration of power density and hydrogen production and utilization technologies”, International Journal of Hydrogen Energy, Vol.28, pp. 1325-1332, 2003.
[23] T. Graham, “On the Relation of Hydrogen to Palladium”, Journal of the Franklin Institute, Vol.87, pp.256-266, 1869.
[24] J.J. Reilly, R.H. Wiswall, ”The Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4”, Inorganic Chemistry, Vol.7, pp.2254-2256, 1968.
[25] J.H.N. Van Vucht, et al., “Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds”, Philips Research Reports, Vol.25, pp.133-140, 1970.
[26] J.J. Reilly, R.H. Wiswall, “Formation and Properties of Iron Titanium Hydride”, Inorganic Chemistry, Vol.13, p.218, 1974.
[27] M. Martin, et al., “Absorption and Desorption Kinetics of Hydrogen Storage Alloys”, Journal of Alloys and Compounds, Vol.238, pp.193-201, 1996.
[28] E. David, “An overview of advanced materials for hydrogen storage”, Journal of Materials Processing Technology, Vol.162-163, pp.169-177, 2005.
[29] A. Anani, et al., “Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries”, Journal of Power Sources, Vol.47, pp.261-275, 1994.
[30] K. Aoki, et al., “Thermodynamics of Hydrogen Absorptionin Amorphous Zr-Ni Alloys”, Journal of Non-Crystalline Solids, Vol.61-62, pp.679-684, 1984.
[31] K.C. Hong, “The development of hydrogen storage electrode alloys for nickel hydride batteries”, Journal of power sources, Vol.96, pp.85-89, 2001.
[32] M. Jurczyk, et al., “Nanocrystalline LaNi5-type Electrode Materials for Ni-MHx Batteries”, Journal of Solid State Chemistry, Vol.171, pp.30-37, 2003.
[33] V.D. Dobrovolsky, et al., “Thermal stability and H-desorption properties of Mg3MnNi2Hx prepared by reactive mechanical alloying of powders Mg, Mn, Ni in H2-atmosphere”, Proc X Int Conf Hydrogen Mater Science & Chemistry of Carbon Nanomaterial, Sudak, Ukraine, 2007.
[34] 陳軍, 陶占良著, “鎳氫二次電池”,化學工業出版社, pp.89-91, 2006.
[35] M.H. Wang, et al., “The effects of partial substitution of Cr for Ni on the electrochemical properties of Mg1.75Al0.25Ni1−xCrx (0≤x≤0.3) electrode alloys”, Journal of Power Sources, Vol.159, pp.159-162, 2006.
[36] C. Rongeat, et al., “Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries”, Journal of power sources, Vol.158, pp.747-753, 2006.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2008-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明