參考文獻 |
[1] G. Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, Journal of Alloys and Compounds, Vol.293-295, pp.877–888, 1999.
[2] J.L. Luo, N. Cui, “Effects of microencapsulation on the electrode behavior of Mg2Ni-based hydrogen storage alloy in alkaline solution”, Journal of Alloys and Compounds, Vol.264, pp.299-305, 1998.
[3] N. Cui, et al., “Synthesis and electrode characteristics of the new composite alloys Mg2Ni-xwt.% Ti2Ni”, Journal of Alloys and Compounds, Vol.240, 1996, pp.229-234.
[4] N. Cui, et al., “Characteristics of magnesium-based hydrogen -storage alloy electrodes”, Journal of power sources, Vol.55, pp.263-267, 1995.
[5] N.H. Goo, et al., “Mechanism of rapid degradation of nanostructured Mg2Ni hydrogen storage alloy electrode synthesized by mechanical alloying and the effect of mechanically coating with nickel” , Journal of Alloys and Compounds, Vol.288, pp.286–293, 1999.
[6] J.S. Kim, et al., “Effects of F-treatment on degradation of Mg2Ni electrode fabricated by mechanical alloying”, Journal of Power Sources, Vol.104, pp.201-207, 2002.
[7] C. Iwakura, et al., “Hydriding and electrochemical characteristics of a homogeneous amorphous Mg2Ni-Ni composite”, Journal of Alloys and Compounds, Vol.270, pp.142–144, 1998.
[8] J. Chen, et al., “Mg Ni-based hydrogen storage alloys for metal hydride electrodes”, Journal of Alloys and Compounds, Vol.293-295, pp.675-679, 1999.
[9] A. Gasiorowski, et al., “Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M = Mn, Al)”, Journal of Alloys and Compounds, Vol.364, pp.283-288, 2004.
[10] R.V. Denys, et al., “Structure and hydrogenation properties of new Mg-based alloys”, Proc IX Int Conf Hydrogen Mater Science & Chemistry of Carbon Nanomaterial, Sevastopol, Ukraine, 2005.
[11] G..L. Lu, et al., “Study on the phase composition of Mg2-xMxNi (M=Al, Ti) alloys”, Journal of Alloys and Compounds, Vol.321, pp.L1-L4, 2001.
[12] H. Inoue, et al. ,“Effect of ball-milling on electrochemical and physicochemical characteristics of crystalline Mg2Ni alloy”, Electrochimica Acta, Vol.43, pp.2215–2219, 1998.
[13] R.V. Denys, et al., “New Mg-M-Ni (M=Mn,Ti,Al) alloys as efficient hydrogen storage materials”, Proc X Int Conf Hydrogen Mater Science & Chemistry of Carbon Nanomaterial, Sudak, Ukraine, 2007.
[14] C.W. Hsu, et al., “Mass production of Mg2Ni alloy bulk by isothermal evaporation casting process” , International Journal of Hydrogen Energy, Vol.32, pp.4907-4911, 2007.
[15] N. Khan, et al., “Fossil fuels, new energy sources and the great energy crisis”, Renewable and Sustainable Energy Reviews, in press, 2008.
[16] B.W. Ang, “Monitoring changes in economy-wide energy efficiency: From energy–GDP ratio to composite efficiency index”, Energy Policy, Vol.34, pp.574-582, 2006.
[17] W.C. Lattina, V.P. Utgikar, “Transition to hydrogen economy in the United States:A2006 status report”, International Journal of Hydrogen Energy, Vol.32, pp.3230-3237, 2007.
[18] G. Crabtree, et al., “The hydrogen economy”, Physics Today, Vol.57, pp.39-44, 2004.
[19] G. Marban, T. Valdes-Solis, “Towards the hydrogen economy? ”, International Journal of Hydrogen Energy, Vol.32, pp.1625-1637, 2007.
[20] A. Zuttel, “Materials for hydrogen storage”, Materials Today, Vol.6, pp.24-33, 2003.
[21] S.A. Sherif, et al., “Wind energy and the hydrogen economy—review of the technology”, Solar Energy, Vol.78, pp. 647-660, 2005.
[22] W. Iwasaki, “A consideration of power density and hydrogen production and utilization technologies”, International Journal of Hydrogen Energy, Vol.28, pp. 1325-1332, 2003.
[23] T. Graham, “On the Relation of Hydrogen to Palladium”, Journal of the Franklin Institute, Vol.87, pp.256-266, 1869.
[24] J.J. Reilly, R.H. Wiswall, ”The Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4”, Inorganic Chemistry, Vol.7, pp.2254-2256, 1968.
[25] J.H.N. Van Vucht, et al., “Reversible Room-Temperature Absorption of Large Quantities of Hydrogen by Intermetallic Compounds”, Philips Research Reports, Vol.25, pp.133-140, 1970.
[26] J.J. Reilly, R.H. Wiswall, “Formation and Properties of Iron Titanium Hydride”, Inorganic Chemistry, Vol.13, p.218, 1974.
[27] M. Martin, et al., “Absorption and Desorption Kinetics of Hydrogen Storage Alloys”, Journal of Alloys and Compounds, Vol.238, pp.193-201, 1996.
[28] E. David, “An overview of advanced materials for hydrogen storage”, Journal of Materials Processing Technology, Vol.162-163, pp.169-177, 2005.
[29] A. Anani, et al., “Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries”, Journal of Power Sources, Vol.47, pp.261-275, 1994.
[30] K. Aoki, et al., “Thermodynamics of Hydrogen Absorptionin Amorphous Zr-Ni Alloys”, Journal of Non-Crystalline Solids, Vol.61-62, pp.679-684, 1984.
[31] K.C. Hong, “The development of hydrogen storage electrode alloys for nickel hydride batteries”, Journal of power sources, Vol.96, pp.85-89, 2001.
[32] M. Jurczyk, et al., “Nanocrystalline LaNi5-type Electrode Materials for Ni-MHx Batteries”, Journal of Solid State Chemistry, Vol.171, pp.30-37, 2003.
[33] V.D. Dobrovolsky, et al., “Thermal stability and H-desorption properties of Mg3MnNi2Hx prepared by reactive mechanical alloying of powders Mg, Mn, Ni in H2-atmosphere”, Proc X Int Conf Hydrogen Mater Science & Chemistry of Carbon Nanomaterial, Sudak, Ukraine, 2007.
[34] 陳軍, 陶占良著, “鎳氫二次電池”,化學工業出版社, pp.89-91, 2006.
[35] M.H. Wang, et al., “The effects of partial substitution of Cr for Ni on the electrochemical properties of Mg1.75Al0.25Ni1−xCrx (0≤x≤0.3) electrode alloys”, Journal of Power Sources, Vol.159, pp.159-162, 2006.
[36] C. Rongeat, et al., “Evaluation of different approaches for improving the cycle life of MgNi-based electrodes for Ni-MH batteries”, Journal of power sources, Vol.158, pp.747-753, 2006. |