博碩士論文 953303023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:34.238.192.150
姓名 張正明(Cheng-Ming Chang)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 高解析熱氣泡式噴墨頭墨滴成形觀測
(Visualization and Measurement of Droplet Ejection from High-Resolution Thermal-Bubble Inkjet Printhead)
相關論文
★ 以數值模擬探討微管流之物理效應★ 微管流之層流與紊流模擬
★ 銅質均熱片研製★ 熱差式氣體流量計之感測模式及氣流道效應分析
★ 低溫倉儲噴流系統之實驗量測與數值模擬研究★ 壓縮微管流的熱流分析
★ 微小圓管的層流及熱傳數值模擬★ 微型平板流和圓管流的熱流特性:以數值探討壓縮和稀薄效應
★ 微管道電滲流物理特性之數值模擬★ 電滲泵內多孔介質微流場特性之數值模擬
★ 被動式微混合器之數值模擬★ 電滲泵的製作與性能測試
★ 叉合型流場於質子交換膜燃料電池之陰極半電池的參數探討★ 無動件式高流率電滲泵的製作與特性分析
★ 微電滲泵之暫態熱流研究★ 電滲泵之焦耳熱效應分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文針對高解析度之熱氣泡式噴墨頭的噴墨行為做觀測,透過自製簡易的墨滴觀測系統,利用閃頻同步的原理,配合光學鏡頭組、訊號產生器及影像擷取裝置,將不同時間點之噴墨影像記錄,並以影像軟體分析墨滴串的長度、飛行速度及墨滴尺寸。文中探討不同的操作電壓、頻寬、頻率及不同黏度的墨水對墨滴軌跡的效應,並與噴墨行為的關聯做出解釋,也與文獻結果做比對。最後藉由量測實際印表機給予噴墨頭的訊號,得知電壓與頻寬訊號在提供維持穩定噴墨的熱通量,可藉由調整不同的頻率大小,來符合不同的列印紙張與列印效果。此外,在執行噴墨頭開發初期,可藉由本墨滴觀測系統,先找出符合該噴墨頭的穩定噴墨訊號,以防止因操作不當使加熱器被燒毀。再藉由調整頻率的大小,墨水的特性,來達到符合要求的列印品質,可縮短開發時程及降低成本。
摘要(英) This study visualizes and measures the droplet ejection process of a high-resolution thermal-bubble inkjet printhead. A simple system utilizes the synchronization of the stroboscope, which consist of a set of optical lens, a function generator, and an image grabber, to record the droplets image at different delay time and analyze the length, flying speed and size of droplets. Also, the influences of voltage, pulse width, frequency, and the different viscosity of ink on droplet ejection process are discussed in order to know the relation between the inkjet signals and droplet ejection behavior, and then compare it with related records of documents. Finally, the signals of the inkjet printhead from a genuine printer are measured to investigate the relation of signal and the printing quality. This study finds that the voltage and pulse width are two key factors for providing stable heat flux, and by adjusting frequency one can adapt for various types of paper and printing effect. Further, during the lead time of developing inkjet printhead, this experimental system can be used to measure the correct signals and hence prevent heater burnout by misoperation. Moreover, this system can be utilized to adjust the frequency and change the ink characteristic in order to meet with the requirement of printing quality and to reduce the lead time and development costs.
關鍵字(中) ★ 墨滴成形
★ 熱氣泡式噴墨頭
關鍵字(英) ★ droplet ejection
★ printhead
★ inkjet
★ thermal bubble
論文目次 誌謝 II
摘要 III
Abstract IV
附表目錄 VII
附圖目錄 VIII
符號說明 XIII
第一章 前言 1
1-1 研究背景 1
1-2 熱氣泡式噴墨頭工作循環 2
1-3 研究目的 3
第二章 文獻回顧 4
2-1 熱氣泡式噴墨頭的發展歷史 4
2-2熱氣泡式噴墨頭的創新與改良 4
2-2-1 噴墨驅動方式的改善 5
2-2-2 加熱器的改良 6
2-2-3 製程的創新與測試 7
2-3噴墨頭噴墨過程之觀測與模擬 9
第三章 實驗設備與方法 11
3-1實驗設備 11
3-2實驗方法 13
第四章 實驗結果與討論 15
4-1墨滴噴出過程連續影像 15
4-2電壓效應 16
4-3頻寬效應 19
4-4頻率效應 21
4-5墨水效應 23
4-6印表機列印模式訊號之量測與討論 25
第五章 結論 27
參考文獻 29
參考文獻 1.科技產業資訊室,市場報導-2004年全球數位相機產業分析,2005: http://cdnet.stpi.org.tw/techroom/market/eecamera/eecamera006.htm.
2.S. Nigro and E. Smouse , “Hewlett-Packard Inkjet Printing Technology: The State of the Art ,“ March 1999: http://www.hp.com/oeminkjet/reports/techpress_11.pdf.
3.N. Stemme, “Arrangement of writing mechanisms for writing on paper with colored liquid,” U.S. Patent 3747120, 1973.
4.S.F. Pond, Inkjet Technology and Product Development Strategies, Torrey Pines Research, California, 2000.
5.殷孟雲,噴墨印表機設計原理,全華科技,台北市,1991.
6.J.S. Aden, J.H. Bohórquez, D.M. Collins, M.D. Crook, A. García and U.E. Hess, “The third-generation HP thermal inkjet printhead,” Hewlett-Packard Journal, vol. 45, no. 6, pp. 41-45, 1994..
7.F.R. Bryant, J.M. Torgerson and A.W. Bakkom, “Printhead with looped gate transistor structures,” U.S. Patent 6883894, 2005.
8.J.G. Edelen, G.K. Parish and K.M. Rowe, “Microfluid ejection device having efficient logic and driver circuitry,” U.S. Patent 7018012, 2006.
9.T.A. Cleand, “Segmented resistor drop generator for inkjet printing,” U.S. Patent 6123419, 2000.
10.S.-W. Lee, H.-C. Kim, K. Kuk and Y.-S. Oh, “A monolithic inkjet print head: Domejet,” The 14th IEEE International Conference on MEMS, Interlaken, Switzerland, 2001.
11.P.M. Burke and T.L. Weber, “Inkjet printhead with tuned firing chamber and multiple inlets,” U.S. Patent 5666143, 1997.
12.F.-G. Tseng, C.-J. Kim and C.-M. Ho, “A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops-part I: concept, design and model,” J. Microelectromechanical Systems, vol. 11, no. 5, pp. 427-436, 2002.
13.F.E. Anderson, J.P. Bolash, R.W. Cornell and G.K. Parish, “Dual droplet size printhead,” U.S. Patent 6137502, 2000.
14.R.W. Cornell and B.D. Gibson, “Ink jet printer having driver circuit for generating warming and firing pulses for heating elements,” U.S. Patent 6296350, 2001.
15.B.J Keefe, M.F. Ho, K.J. Courian, S.W. Steinfield, W.D. Childers, E.R. Tappon, K.E. Trueba, T.I. Chapman, W.R. Knight and J.G. Moritz, “Inkjet printhead architecture for high speed ink firing chamber refill,” U.S. Patent 5563642, 1996.
16.H. Braun, “Bubble ink jet print head and cartridge construction and fabrication method,” U.S. Patent 4942408, 1990.
17.C.A. Schantz, E.G. Hanson, S-T Lam, P.H. McClelland, W.J Lloyd ,L.S. Mittelstadt and A.T Pan, “Laser ablated nozzle member for inkjet printhead,” U.S. Patent 5305015, 1994.
18.P. Krause , E. Obermeier and W. Wehl, “A micromachined single-chip inkjet printhead,” Sensors and Actuators A, vol. 53, pp. 405-409, 1996.
19.J.-D. Lee, J.-B. Yoon, J.-K. Kim, H.-J. Chung, C.-S. Lee, H.-D. Lee, H.-J. Lee, C.-K. Kim, and C.-H. Han, “A thermal inkjet printhead with a monolithically fabricated nozzle plate and self-aligned ink feed hole,” J. Microelectromechanical Systems, vol. 8, pp. 229-236, 1999.
20.F.-G. Tseng, C.-J. Kim and C.-M. Ho, “A high-resolution high-frequency monolithic top-shooting microinjector free of satellite drops-part II; fabrication, implementation, and characterization,” J. Microelectromechanical Systems, vol. 11, no. 5, pp. 437-447, 2002.
21.H.S. Hu, W.L. Chen, I.Y. Lee, T.P. Hsu, C.C. Chou and S.S. Wu, “Fluid injector and method of manufacturing the same,” United States Patent 7040740, 2006.
22.R. Muller, R. Gronmaier, K. Janischowsky, J. Kusterer and E. Kohn, “An all-diamond inkjet realized in sacrificial layer technology,” Diamond & Relate Materials, vol. 14 pp. 504-508, 2005.
23.T. Lindemann, H. Ashauer, Y. Yu, D.S. Sassano, R. Zengerle and P. Koltay, “One inch thermal bubble jet printhead with laser structured integrated polyimide nozzle plate,” J. Microelectromechanical System, vol. 16, pp. 420-428, 2007.
24.S.J. Shin , K. Kuk, J.W. Shin, C.S. Lee, Y.S. Oh and S. O. Park, “Thermal design modifications to improve firing frequency of back shooting inkjet printhead,” Sensors and Actuators A, vol.114, pp. 387-391, 2004.
25.J.H. Park and Y.S Oh, “Investigation to minimize heater burnout in thermal thin film print heads,” Microsystem Technologies, vol.11, pp. 16-22, 2005.
26.A. Asai, “Application of nucleation theory to design of bubble jet printers,” Jpn. J. Appl. Phys, vol. 28, pp.909-915, 1989.
27.A. Asai, “Bubble dynamics in boiling under high heat flux pulse heating,” ASME J. Heat Transfer, vol. 113, pp. 973-979, 1991.
28.陳文成,熱氣泡式噴墨印頭噴墨過程之研究,國立臺灣大學機械工程學研究博士論文,臺北市,1998。
29.林志信,熱泡式噴墨頭之液滴成形觀測,國立清華大學動力機械工程學系碩士論文,新竹市,2003。
30.I.-D. Yang, T.-F. Wu, C. Pan, F. Tseng, R.-J. Yu, C.-C. Chieng, “Droplet ejection and the induced flowfield by microthermal bubble during growth/collapse process,” Proc. ImechE vol. 220 Part C: J. Mechanical Engineering Science, pp. 1269-1281, 2006.
31.P.-H. Chen, W.-C. Chen and S.-H. Chang, ” Bubble growth and ink ejection process of a thermal ink jet printhead,” Int. J. Mech. Sci. vol. 39, No. 6, pp. 683-695, 1997.
32.莊達人,VLSI製造技術,高立圖書,台北市,1995.
指導教授 吳俊諆(Jiunn-Chi Wu) 審核日期 2008-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明