博碩士論文 953402009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.235.191.87
姓名 黃致榮(Chih-Jung Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 三維多相流體與柔性固體耦合互制分析
(Interaction Analyses of Three Dimensional Multiphase Fluids and Flexible Solids)
相關論文
★ 貼片補強構件之層間應力分析★ 軌道不整檢測及識別方法
★ 混凝土結構分析之三維等效單軸組成材料模型★ 卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證
★ 以四面體離散化多面體系統之接觸分析與模擬★ 軌道車輛三維動態脫軌係數之在線量測理論
★ 向量式DKMT厚殼元推導與模擬★ 向量式預力混凝土二維剛架元之數值模擬與驗證
★ 向量式有限元應用於懸索橋非線性動力分析★ 蛋形顆粒群之流固耦合分析
★ 複合版梁元素分析模型之橋梁動態識別法★ 三維等效單軸應變與應力之材料組成模型
★ 人行吊橋的現有內力評估及動力分析★ 薄殼結構非線性運動之向量式有限元分析法
★ 雷射掃描技術於鋼軌磨耗之檢測★ 動態加載下的等效單軸應變與 應力材料組成模型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 三維流體與結構動力互制行為內涵豐富而複雜的物理現象,可應用於相關之設計及分析工作之中,因而長久以來為工程師所關注,而計算力學正是一種有效的方法提供工程師獲得此類問題更多細部訊息。因此本論文提出了一種新開發之流固耦合分析程序,可應用於研究離散可變形固體與多相流體的運動分析,流體程式是使用Los Alamos National Laboratory (LANL)所開發之軟體Truchas,固體運動則是使用向量式有限元素法(Vector Form Intrinsic Finite Element, VFIFE)加以求解。此一雙向流固耦合移動固體法,運動固體表面壓力是透過求解Navier-Stokes方程,利用流體體積法Volume-Of-Fluid (VOF)追踪自由液面的運動,改良投影法完成壓力和速度場去耦合動作,最後利用雙向移動固體法做為VFIFE模型及VOF模型間的橋梁。隨著這種新開發的移動固體法,分析過程不再需要預定固體運動之軌跡。
向量式有限元素法將固體及結構之運動視為一群由獨立節點所組成,整體結構的大變形及破壞行為模擬是由每個承受外力及內力之節點加以描述。相較於傳統非線性結構分析,向量式有限元素法可免去求解繁複的迭代問題及偏微分方程式,關鍵架構如下:(1)點值描述(Point Value Description, PVD),(2)途徑單元(Path Element) 及(3)移動參考構架(Convected Material Frame, CMF)。利用上述功能,向量式有限元素法可輕易且適切地使用力控制及位移控制進行物體運動由連續至不連續之狀態分析,所以此新發展之流固耦合方法將可應用於地震、泥石流、風、浮木、洪水引起之複合式災害及結構損壞之診斷評估問題。
摘要(英) Three dimensional fluid-structure dynamic interaction behaviors contain fruitful and complex physical phenomena and are interested to engineers for their design and analysis works. Computational mechanics is an effective way to assist engineers obtaining more detail information for this type of problem. This dissertation presents a newly developed fluid-solid interaction analysis algorithm. This algorithm can be used to investigate the motions of discrete deformable bodies in multi-phase viscous fluid. The CFD analysis in this computation algorithm uses the Truchas developed by the Los Alamos National Laboratory (LANL) and the motions of the solids are computed by a algorithm developed based on the vector form intrinsic finite element (VFIFE) method. A two-way coupled moving solid algorithm is developed. The motions of solids are based on the surface pressure obtained from solving the Navier-Stokes equations. The free-surface kinematic is tracked by the volume-of-fluid (VOF) method. The modified projection method is used to decouple and solve the pressure and velocity field. The two-way coupled moving solid method is developed to bridge the VFIFE model and VOF model. With this newly developed moving-solid method, the trajectory of the solid motion is no longer needed to be prescribed.
The VFIFE method analyzes the motion of the solids and structures by modeling the individual object as a group of representative finite particles. The motion of each particle subjected to external and internal forces is used to simulate the large displacements and failures of the whole structure. The VFIFE method based on the intrinsic theories of mechanics avoids the difficulties such as the iterative and perturbation procedures in solving partial differential equations in the traditional nonlinear structural analyses. The key concepts in the analysis of the VFIFE method are: (1) the point value description (PVD), (2) the path element, and (3) the convected material frame (CMF). With these features, the VFIFE method can analyze the motion of a body from continuous states to discontinuous states with load control or displacement control easily and adaptively. Hence, the multi-hazard and failure analyses of infrastructures under the excitations of earthquake, debris flow, wind and flood can be conducted by this newly proposed computational fluid-structure interaction analysis method.
關鍵字(中) ★ 流固耦合分析
★ 三維多相流
★ 多體力學
★ 結構破壞多重災害
★ 地震
★ 土石流
★ 橋墩沖刷
關鍵字(英) ★ Fluid-structure interaction analysis
★ Three-dimensional multiphase flow
★ Multi-mechanics
★ Structure Multi-hazard
★ Earthquake
★ debris flow
★ Pier Scour
論文目次 中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 1
1.1 研究背景及動機 1
1.2 文獻回顧 5
1.3 研究方法的特色 9
1.4 論文架構 10
第二章 流固耦合程序 12
2.1 剛性固體-流固耦合分析程序 13
2.2 柔性固體流固耦合分析程序-流場壓力之內插計算 19
2.3 柔性固體流固耦合分析程序-流體體積之計算 20
2.4 柔性固體流固耦合分析程序-固體速度影響流場之分析流程 24
2.5 諧和流固程序時間步長 26
2.6 流固耦合分析程序計算流程 27
第三章 剛性固體流固耦合程序-離散元素法 31
3.1 離散元素法控制方程式 31
3.2 固體接觸判斷 34
第四章 三維固體向量式有限元理論 37
4.1 途徑單元與點值描述 37
4.2 四面體元的位移和變形 38
4.3 四面體元之內力計算 42
4.4 四面體元的外力計算 50
4.5 元素大轉動測試 54
第五章 剛性體流固耦合模式數值算例 56
5.1 剛性體沉體試驗 56
5.2 剛性體浮體方塊模擬 61
5.3 剛性固體流固耦合大轉動試驗 66
5.4 剛性體飄流物模擬 71
5.5 剛性體碰撞模組的開發 74
5.6 浮木撞擊橋墩模擬 77
第六章 柔性體流固耦合模式數值算例 85
6.1 3D Solid元素驗證 85
6.2 無覆土之震動台試驗 86
6.3 柔性塊體浮體試驗 89
6.4 彈性水壩閥門的變形 95
6.5 彈性柱體的變形分析及沖刷深度的分析 103
6.6 地震-流固耦合模組 111
6.7 橋墩受洪水衝擊之振動分析 118
第七章 結論與建議 124
參考文獻 127
附錄A 流體研究方法及理論 132
A.1 控制方程式 132
A.2 流體體積法 133
A.3 有限體積法 136
A.4 改良投影法 (分步法) 137
A.5 部份網格法(Partial-cell Treatment) 139
A.6 大渦度LES模式 140
附錄B 向量式有限元素法相關理論 144
B.1 空間轉動位移的計算 144
參考文獻 [1] O’Brien, J. F., Zordan, V. B., and Hodgins, J. K., “Combining active and passive simulations for secondary motion.”, IEEE Computer Graphics and Applications 20, 4, 86–96, 2000.
[2] Liu, P.L.-F., Wu, T. R., Raichlen, F., Synolakis, C., and Borrero, J., “Runup and rundown from three-dimensional sliding masses.”, Journal of Fluid Mechanics, 536, 107-144, 2005.
[3] 丁承先, 王仲宇, 吳東岳, 王仁佐, 莊清鏘, V-5研究組,運動解析與向量式有限元(2.0版),中央大學工學院,橋梁工程研究中心 (2007)。
[4] 丁承先, 王仲宇, 向量式固體力學,中央大學工學院,橋梁工程研究中心(2008)。
[5] Cundall, P. A., “Formulation of three-dimensional distinct element model-Part I: A scheme to detect and represent contacts in a system composed of many polyhedral blocks.”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 25, 107-116, 1988.
[6] Cundall, P. A., “Formulation of a three-dimensional distinct element model-Part II: Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks.”, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 25, 117-125, 1988.
[7] Chen, J., da Vitoria Lobo, N., “Toward interactive-rate simulation of fluids with moving obstacles using Navier-Stokes equations.”, Graphical Models and Image Processing, 57, 107-116, 1995.
[8] Foster, N., Metaxas, D., “Realistic animation of liquids.”, Graphical Models and Image Processing, 58, 471-483, 1996.
[9] Foster, N., Metaxas, D., “Controlling fluid animation.”, Computer Graphics International, 97, 178-188, 1997.
[10] Foster, N., and Fedki, R., “Practical animation of liquids.”, In Proceedings of ACM SIGGRAPH, Computer Graphics Proceedings, Annual Conference Series, 23–30, 2001.
[11] Foster, N., and Metaxas, D., “Realistic animation of liquids.”, Graphical Models and Image Processing58,5, 471–483, 1996.
[12] O’Brien, J. F. and Hodgins, J. K., “Dynamic simulation of splashing fluids.”, Computer Animation, 95, 198-205, 1995.
[13] Wu, T. R., “A numerical study of three-dimensional breaking waves and turbulence effects.” Ph.D. Dissertation, Cornell University, 2004
[14] Takahashi, T., Fujii, H., Kunimatsu, A, Hiwada, K., Saito, T., Tanaka, K., Ueki, H., “Realistic animation of fluid with splash and foam.”, Computer Graphics Forum, 22, 391-401, 2002.
[15] Takahashi T., Heihachi U., Kunimatsu A., “The simulation of fluid-rigid body interaction.”, SIGGRAPH Sketches & Applications, 266, 2003.
[16] G´enevaux, O., Habibi A., and Dischler, J. M., “Simulating fluid-solid interaction.”, In Graphics Interface, CIPS, Canadian Human-Computer Communication Society, 31–38, 2003.
[17] Singh, P., Hesla, T. I., and Joseph, D. D., “Distributed Lagrange multiplier method for particulate flows with collisions.” International Journal of Multiphase Flow 29, 3, 495–509, 2003.
[18] Hirt, C., Amsden, A., and Cook, J., “An arbitrary Lagrangian-Eulerian computing method for all flow speeds.”, Journal of Computational Physics 14, 227–253, 1974.
[19] Shen, L., Chan, E. S., “Numerical simulation of fluid-structure interaction using a combined volume of fluid and immersed boundary method.”, Ocean Eng, 35, 939-52, 2008.
[20] Yngve, G., O’Brien, J., and Hodgins J., “Animating explosions.”, In Proceedings of ACM SIGGRAPH 2000, pages 29–36, August 2000.
[21] Carlson, M., Mucha, P. J., and Turk, G., “Rigid fluid: Animating the interplay between rigid bodies and fluid.”, ACM Trans. Graph. (SIGGRAPH Proc.) 23, 377–384, 2004.
[22] Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R., “Coupling water and smoke to thin deformable and rigid shells.”, ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 973–981, 2005.
[23] Losasso, F., Shinar, T., Shelle., and Fedkiw, R., “Multiple interacting liquids.”, ACM Trans. Graph. (SIGGRAPH Proc.) 25, 3, 812–819, 2006.
[24] Robinson-Mosher, A., Shinar, T., Gretarsson, J., Su, J., and Fedkiw, R., “Two-way coupling of fluids to rigid and deformable solids and shells.”, ACM Trans. Graph. (SIGGRAPH Proc.) 27, 46:1–46:9, 2008.
[25] Monaghan, J. J., “Smoothed particle hydrodynamics.”, Annual Review of Astronomy and Astrophysics 30, 1 , 543–574, 1992.
[26] Muller, M., Charypar, D., Gross, M., “Particle-based fluid simulation for interactive applications.” In Proceedings of the 2003 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, SCA ’03, Eurographics Association, pp. 154–159, 2003.
[27] Oger, G., Doring, M., Alessandrini, B., and Ferrant, P., “Two-dimensional SPH simulations of wedge water entries.”, Journal of Computational Physics 213, 2, 803–822, 2006.
[28] Muller, M., Schirm, S., Teschner, M., Heidelber, B., and Gross, M., “Interaction of fluids with deformable solids.”, Computer Animation and Virtual Worlds 15, 34, 159–1712, 2004.
[29] Lenaerts, T., Adams, B., and Dutre, P., “Porous flow in particle-based fluid simulations. “ ,In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers, ACM, New York, NY, USA, 1–8, 2008.
[30] Solenthaler, B., and Gross, M., “Two-scale particle simulation.”, ACM Trans. on Graphics (SIGGRAPH Proc.) 30, 4,81:1–81:8, 2011.
[31] Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B., Teschner, M., “Versatile Rigid-Fluid Coupling for Incompressible SPH.”, In ACM SIGGRAPH 2012, To appear. 2,3 , 2012.
[32] Ihmsen, M., Akinci, N., Becker, M., Techner, M., “A parallel SPH implementation on multi-core cpus.” Comput. Graph. Forum 30, 1 , 99–112, 2011.
[33] Chuang, M. H., “Developing a Two-way Coupled of Moving Solid Method for Solving Landslide Generated Tsunamis,” master’s thesis, National Central University, 2009.
[34] Wu, T. R., Huang, C. J., Chuang, M. H., Wang C. Y., Chu, C. R., “Dynamic Coupling of Multi-phase Fluids with a Moving Obstacle.” Journal of Materials Sciences and Technology, Vol. 19, No. 6, pp. 643-650, 2011.
[35] Shi, G. H., “Discontinuous deformation analysis-a new numerical model for the statics and dynamics of block system.”, Ph. D. Dissertation, University of California, Berkeley, 1988.
[36] Shi, G. H.., “Manifold method of material analysis. Transactions of the Ninth Army Conference on Applied mathematics and Computing.”, Minneapolis, Minnesota, USA, 51-76, 1992.
[37] Wang, C. Y., and Liang, V. C., “A Packing Generation Scheme for the Granular Assemblies with Planar Elliptical Particles,”International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 21, pp. 347-358,1997.
[38] Wang, C. Y., Wang, C. F. and Sheng, J., “A Packing Generation Scheme for the Granular Assemblies with 3D Ellipsoidal Particles.”, International Journal for Numerical and Analytical Methods in Geomechanics , 23: 815-828, 1999.
[39] 許秀真,「剛性多面體系統之數值模擬」,碩士論文,國立中央大學土木工程研究所,中壢(2000) 。
[40] Matthew, R. K., “Smooth Convex Three-Dimensional Particle for the Discrete-Element Method,” Journal of Engineering Mechanics, 10.1061(ASCE) 0733-9399 129:5(539), 2004.
[41] Ting, E. C., Shih, C. and Wang, Y. K.,“Fundamentals of a vector form intrinsic finite element: Part I. basic procedure and a plane frame element.”, J. Mech., 20(2), pp. 113-122, 2004.
[42] Ting, E. C., Shih, C. and Wang, Y. K.,“Fundamentals of a vector form intrinsic finite element: Part II. plane solid elements,” J. Mech., 20(2), pp. 123-132, 2004.
[43] Shih, C., Wang, Y. K. and Ting, E. C.,“Fundamentals of a vector form intrinsic finite element: Part III. Convected material frame and examples,” J. Mech., 20(2), pp. 133-143 , 2004.
[44] Wang, R. Z., Tsai, K. C., Lin, B. Z., “Extremely large displacement dynamic analysis of elastic–plastic plane frames.”, Earthquake Engineering & Structural Dynamics 2011;40: 1515–33.
[45] Wang, C. Y., Wang, R. Z., Chuang, C. C., and Wu, T. Y., “Nonlinear Analysis of Reticulated Space Truss Structures,” Journal of Mechanics, Vol. 22, No. 3, pp. 235-248, 2006.
[46] Wu, T. Y., Wang, C. Y., Chuang C. C., Ting. E. C., “Motion analysis of 3D membrane structures by a vector form intrinsic finite element.”, Journal of the Chinese Institute of Engineers , 30:961–76, 2007.
[47] Wu, T. Y., Ting, E. C., “Large deflection analysis of 3D membrane structures by a 4-node quadrilateral intrinsic element.”, Thin-Walled Structures 2008;46:261–75.
[48] Wu, T. Y., Wu, J. H., Ho, J. M., Chuang, C. C., Wang, R. Z., and Wang, C. Y., “A Study on Motion Analysis of 3D Solids by a Vector Form Intrinsic Finite Element.”, Journal Chinese Institute of Civil and Hydraulic Engineering, Vol. 19, No.1, pp. 79-89, 2007.
[49] 叶正寅, 张伟伟, 史爱明。流固耦合力學基礎及其應用。哈爾濱工業大學出版社,2010。
[50] 宋學官(2012)。ANSYS流固耦合分析與工程實例。北京:中國水利水電出版社。
[51] Li, Q. Y., Zheng, J. R., Liao, G., Jin, Y., “Approach on Area Coordinate, Volume Coordinate and Their Application in True 3DGIS.”, Journal of Earth Science and Engineering., vol , pp. 53-60 , 2011.
[52] Chu, C.-R., Chang, C.Y., Huang, C. J., Wu, T. R., Wang, C.Y., and Liu, M. Y., “Windbreak protection for road vehicles against crosswind.”, J. of Wind Engineering and Industrial Aerodynamics., (Accepted) February 16, 2013.
[53] Yang, T. Y., Saigal, S., “A simple element for static and dynamic response of beams with material and geometric nonlinearities.”, International Journal for Numerical Methods in Engineering Vol 20, Issue 5, pp. 851-867 ,1984.
[54] 賴姿妤,「樁基礎沖刷橋梁模型之振動台試驗研究」,碩士論文,國立台灣大學土木工程研究所,台北(2011) 。
[55] Antoci, T. C., Gallati M., Sibilla S., “Numerical simulation of fluid–structure interaction by SPH.”, Computers & Structures, Vol 88, pp. 879-890 (2007).
[56] Deardorff, J. W., “A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers.”, J. Fluid Mech. 41:453–80, 1970.
[57] Kothe, D. B., Rider W. J., Mosso, S. J., Brock, J. S., and Hochstein, J. I., “Volume tracking of interfaces having surface tension in two and three dimensions.”, Technical Report, AIAA 96-0859, 1996.
[58] Rider, W. J. and Kothe, D. B., “Reconstructing Volume Tracking.”, J. Comp.Phys., 141, 112-152, 1998.
[59] Chorin, A. J., “Numerical solution of the Navier-Stokes equations.”, Math. Comp., 22, 745-762, 1968.
[60] Chorin, A. J., “On the convergence of discrete approximations of the Navier-Stokes equations. Math. Comp., 23, 341-353, 1969.
指導教授 王仲宇、吳祚任、朱佳仁
(Chung-Yue Wang、Tso-Ren Wu、Chia-Ren Chu)
審核日期 2013-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明