博碩士論文 953403015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.217.203.172
姓名 蔡宇洲(Yu-Chou Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
(Research and fabricating process development of Li-Al based and Li-N based complex hydrides)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響★ 冷加工與熱處理對AA7055鍛造型鋁合金微結構與機械性質的影響
★ 冷抽量對AA7055(Al-Zn-Mg-Cu)-T6態合金腐蝕性質和微結構之影響★ 熱力微照射製作絕緣層矽晶材料之研究
★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究
★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究
★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) Li基複合儲氫材料(Li-based complex hydrides)一直被視為相當具有實用化潛力之新型固態儲氫材料。然而,以往在製備Li基複合儲氫材料時所使用之方法不僅產量小、雜質含量高且製程複雜、耗時較久,使得Li基複合儲氫材料之研究受到阻礙。因此,本論文研究以熔煉之方式製備Li基複合儲氫材料,但因Li活性相當大且易揮發之特性,使傳統熔煉法難以準確熔配出所需化學計量比之Li基複合儲氫材料。故此,本論文研發一階段式氣氛熔煉法(Step-Controlled Casting Process, SCCP)搭配自行設計之階段式氣氛熔煉爐(Step- Controlled Atmosphere furnace, SCA furnace)製備各式Li基複合儲氫材料並研究其儲氫性質。
本研究以階段式氣氛熔煉法搭配本實驗室自行研發之恆溫揮發熔煉法(Isothermal Evaporation Casting Process, IECP)用以製備LiAl、Al4Li9、Li3N、Li-Mg-N及Li3AlN2等Li基複合儲氫材料,並以光學顯微鏡、電子顯微鏡、X-ray繞射儀及ICP-AES等儀器進行微結構觀察與成份分析,結合活化程序及TPH/TPD進行儲氫性質之研究。
實驗結果顯示,本研究所開發之階段式氣氛熔煉法用以熔配Li基複合儲氫材料,可快速、大量合成高純度之LiAl合金,而LiAl合金經過10小時球磨後,在400℃、65大氣壓下氫化24小時可完全氫化形成LiH及Al,其放氫量可達2.40wt.%;且在經過TPD放氫後可逆回復至LiAl合金。在LiAl合金中添加4wt.%TiFe可有效的促進放氫反應之進行,放氫比例由84%提升至87%,放氫量亦由2.40提升至2.50wt.%。為提升儲氫量而熔配出高Li含量之Al4Li9合金,經過初始吸放氫循環後會形成LiAl合金及殘留有Li,而非可逆回復至Al4Li9合金,此外,殘留之Li會形成Li2O及LiOH而造成儲氫量之下降,故Al4Li9合金並不適合取代LiAl合金作為複合儲氫材料。
本研究以恆溫揮發熔煉法熔配出之Li3N複合儲氫材料,除因取料時所產生之些許雜質外,為一相當均質之α-Li3N複合儲氫材料。將其製程搭配階段式氣氛熔煉之概念,即可在不取出α-Li3N之情形下添加Mg及Al塊使其形成Li-Mg-N及Li3AlN2。研究結果顯示,以此製程熔配出之Li3AlN2成分相當準確且均質,但其在400℃、65大氣壓下氫化24小時卻僅有0.4wt.%之放氫量,與文獻中所述之非氫化相合成之Li3AlN2複合儲氫材料幾乎不具有儲放氫性質之結果相符。而以此製程製備出以LiMgN為主之Li-Mg-N複合儲氫材料,成分雖尚不均質,但卻具有3.56wt.%之放氫量,且能從50℃起即開始放氫,具有相當優良之儲氫性質。
摘要(英) Li-based complex hydrides have received considerable attention as some of the most potential hydrogen storage materials due to their light weight and high hydrogen content. For the production of Li-based complex hydrides, several methods have been developed. However, all of the methods have very complicated processes or using kinds of catalysts, so that they are restricted to obtain pure and homogeneous Li-based complex hydrides for mass production. In order to overcome the disadvantages of the Li-based complex hydrides production methods, this study develops a novel procedure, Step-Controlled Casting Process (SCCP), for mass production of Li-based complex hydrides rapidly.
This study combines the concepts of step-controlled casting process with isothermal evaporation casting process (IECP) to produce Li-based complex hydrides, like LiAl, Al4Li9, Li3N, Li3AlN2 and Li-Mg-N complex hydrides. To evaluate the chemical compositions and microstructures of the Li-based complex hydrides fabricated by SCCP combined with IECP, optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and inductivity coupled plasma–atomic emission spectroscopy (ICP-AES) are used. Otherwise, temperature programmed decomposition (TPD) is used to investigate the dehydrogenation properties of the activated Li-based complex hydrides.
The results of this study reveal that a high purity LiAl alloy without any impurity is produced by SCCP. According to the results of TPD and XRD, they can be observed that both of as-cast and ball milled LiAl alloys have reversibility which can return to the initial state. The highest dehydrogenation capacity of 2.40 wt.% can be obtained from the ball milled LiAl alloy hydrogenated under 65 atm at 400℃ for 24 hrs. The dehydrogenation capacity of LiAl alloy doped with 4wt.% TiFe is markedly higher than that of the samples doped with LaNi5 or Mg2Ni and its dehydrogenation fraction is raised from 84% of the ball-milled LiAl alloy to 87%. Al4Li9 alloy is produced in order to raise the hydrogen storage capacity because of its higher Li content. However, it transforms to LiAl and Li instead of Al4Li9 after dehydrogenation. In other words, Al4Li9 alloy is not suitable to replace LiAl alloy as a potential complex hydride.
The Li3N fabricated by IECP in this study is a homogeneous α-Li3N which only contents minor impurity generated during getting materials. The combination of SCCP with IECP can produce Li3AlN2 and Li-Mg-N complex hydrides without taking the formative α-Li3N out of the SCA furnace in order to prevent from the formation of oxides. This procedure can fabricate a high purity Li3AlN2, but it only releases 0.4wt.% hydrogen after hydrogenation under 65 atm at 400℃ for 24 hrs. This result conforms to the published paper which considers that Li3AlN2 can’t store hydrogen if it is synthesized by non-hydride materials. The Li-Mg-N complex hydride manufactured by this composite procedure is non-homogeneous, but it can dehydrogenated from 50℃ and the dehydrogenation capacity of it reaches to 3.56wt.%.
關鍵字(中) ★ 階段式氣氛熔煉法
★ Li基複合儲氫材料
★ Li3N
★ Li3AlN2
★ LiMgN
關鍵字(英) ★ LiMgN
★ Li3AlN2
★ Li3N
★ step-controlled casting process (SCCP)
★ Li-based complex hydrides
論文目次 中文摘要……………………………………………………………….I
英文摘要……………………………………………………………..III
目錄……………………………………………………….…………..V
圖目錄………………………………………………………………...X
表目錄……………………………………………………………...XIV
一、 研究背景…………………………………………………..1
1.1 永恆的能源:氫能…………………………………….....1
1.2 氫能系統…………………………………………………...3
1.3 目前主要儲氫技術………………………………………...7
1.3.1 高壓氣態儲氫…………………………………………….7
1.3.2 液態儲氫………………………………………………….9
1.3.3 固態儲氫 (金屬氫化物儲氫)…………………………...11
1.3.4 奈米碳管吸附儲氫……………………………………...13
1.3.5 選用固態儲氫技術之原因……………………………...14
1.4 固態儲氫材料簡介……………………………………….16
1.4.1 儲氫合金…………………………...……………………18
1.4.1.1 介金屬型儲氫合金…...………………………….18
1.4.1.2 固溶型儲氫合金….……………………………...19
1.4.2 複合儲氫材料……………………..…………………….20
二、 文獻回顧與研究目的………………………………………24
2.1 LiAl基複合儲氫材料…………………………………………24
2.2 LiAl基複合儲氫材料製備方式………………………………26
2.2.1 化學合成法……………………...……………………...26
2.2.2 直接合成法…………………..…………………………28
2.2.3 機械球磨法……………………….…………………….29
2.2.4 機械-化學合成法………………………………...……..31
2.3 催化劑對LiAl基複合儲氫材料之影響……………………..31
2.4 Li3N複合儲氫材料……………………………………………34
2.5 Li-Mg-N複合儲氫材料……………………………………….37
2.5.1 Mg:Li = 3:6…………………………………………...37
2.5.2 Mg:Li = 3:8……………………………………………38
2.5.3 Mg:Li = 3:12………………………………………….39
2.5.4 Mg:Li = 1:1……………………………………………40
2.6 Li-Al-N複合儲氫材料………………………………………...43
2.7 研究目的……………………………………………………...47
2.7.1 LiAl基複合儲氫材料…………………………………...47
2.7.2 Li-Mg-N複合儲氫材料…………………………………51
2.7.3 Li-Al-N複合儲氫材料…………………………………..51
2.7.4 研究目的綜合概述……………………………………..52
三、 研究方法及進行步驟………………………………………54
3.1 階段式氣氛熔煉法之概念…………………………...………54
3.2 階段式氣氛熔煉爐建立…………..………..………………...56
3.3 階段式氣氛熔煉法製備LiAl合金…………………………..57
3.4 LiAl基複合儲氫材料催化劑之添加…………………………58
3.5 Al4Li9複合儲氫材料之製備…………………………………..58
3.6 Li3N複合儲氫材料之製備……………………………………60
3.7 Li-Mg-N及Li-Al-N複合儲氫材料之製備…………………...61
3.8 巨觀及微結構觀察…………………………………………...63
3.8.1 巨觀觀察………………………………………………..63
3.8.2 微結構觀察……………………………………………..63
3.8.3 X-ray繞射分析………………………………………….63
3.8.4 成份分析………………………………………………..64
3.9 Li基複合儲氫材料吸放氫性質檢測…………………………64
3.9.1 活化測試………………………………………………..64
3.9.2 放氫性質測試…………………………………………..67
四、 結果與討論…………………………………………………69
4.1 LiAl合金之製備……………………………………………....69
4.2 LiAl基複合儲氫材料之儲氫性質……………………………74
4.3 LiAl基複合儲氫材料添加催化劑之儲氫性質………………79
4.4 Al4Li9複合儲氫材料之儲氫性質……………………………..84
4.5 Li3N複合儲氫材料之製備及其儲氫性質……………………89
4.6 Li-Mg-N複合儲氫材料……………………………………….92
4.7 Li-Al-N複合儲氫材料之製備及其儲氫性質………………...98
五、 結論……………………………………………………..102
5.1 LiAl基複合儲氫材料………………………………………..102
5.2 Li3N複合儲氫材料…………………………………………..104
5.3 Li-Mg-N複合儲氫材料……………………………………...104
5.4 Li-Al-N複合儲氫材料……………………………………….105
5.5 總結………………………………………………………….105
六、 未來研究方向…………………………………………..107
6.1 製程及設備改良…………………………………………….107
6.2 Li離子電池負極材料之製備………………………………..108
6.3 水解產氫研究……………………………………………….109
參考文獻………………………………………………………………110
附錄一 微量La與Ce稀土元素對A356 (Al-7Si-0.35Mg)鑄鋁合金之影響……………………………………………………………………125
附錄二 Li基複合儲氫材料水解產氫之研究……….………….173
參考文獻 [1] 台灣燃料電池資訊: 燃料電池介紹。取自http://www.tfci.org.tw /Fc/fc1-2.asp。
[2] 胡子龍編著,儲氫材料,曉園出版社,台北市,民國95年,pp.9-25。
[3] 毛宗強編著,張勝雄、管鴻、林矩民、王鴻猷編修,氫能 - 21世紀的綠色能源,新文京開發出版股份有限公司,台北縣,民國97年,pp.213-258。
[4] M. Balat, “Potential importance of hydrogen as a future solution to environmental and transportation problems”, Int. J. Hydrogen Energy, Vol.33, 2008, pp.4013-4029.
[5] J.D. Holladay, J. Hu, D.L. King and Y. Wang, “An overview of hydrogen production technologies”, Catal. Today, Vol.139, 2009, pp.244-260.
[6] S. Satyapal, J. Petrovic, C. Read, G. Thomas and G. Ordaz, “The U.S. Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirements”, Catal. Today, Vol.120, 2007, pp.246-256.
[7] P. Chen and M. Zhu, “Recent progress in hydrogen storage”, Mater. Today, Vol.11, 2008, pp.35-43.
[8] C.L. Aardahl and S.D. Rassat, “Overview of systems considerations for on-board chemical hydrogen storage”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.6676-6683.
[9] B. Sakintuna, F. Lamari-Darkrim and M. Hirscher, “Metal hydride materials for solid hydrogen storage: A review”, Int. J. Hydrogen Energy, Vol.32, 2007, pp.1121-1140.
[10] Z.X. Guo, C. Shang and K.F. Aguey-Zinsou, “Materials challenges for hydrogen storage”, J. Eur. Ceram. Soc., Vol.28, 2008, pp.1467-1473.
[11] G. Sandrock, “A panoramic overview of hydrogen storage alloys form a gas reaction point of view”, J. Alloys Compd., Vol.293-295, 1999, pp.877-888.
[12] R.K. Ahluwalia, T.Q. Hua and J.K. Peng, “Automotive storage of hydrogen in alane”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.7731-7740.
[13] D. Wenger, W. Polifke, E. Schmidt-Ihn, T. Abdel-Baset and S. Maus, “Comments on solid state hydrogen storage systems design for fuel cell vehicles”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.6265-6270.
[14] S. Mellouli, H. Dhaou, F. Askri, A. Jemni and S.B. Nasrallah, “Hydrogen storage in metal hydride tanks equipped with metal foam heat exchanger”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.9393-9401.
[15] D. Mori and K. Hirose, “Recent challenges of hydrogen storage technologies for fuel cell vehicles”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.4569-4574.
[16] D. Mori, N. Kobayashi, T. Matsunaga, K. Toh and Y. Kojima, Materia Japan, Vol.44, 2005, pp.257-262.
[17] D. Mori, N. Kobayashi, T. Shionozawa, T. Matsunaga, H. Kubo and K. Toh et al., “Hydrogen storage materials for fuel cell vehicles high-pressure MH system”, Japan Inst Metals, Vol.69, 2005, pp.308-311.
[18] 漢氫科技股份有限公司: HB-SC-0660-N, 660 Liter Hydrogen Storage。取自http://www.hbank.com.tw/fc_products_pr_05.htm。
[19] U.S. Department of Energy (DOE) Office of Science Laboratory, “Basic research needs for the hydrogen economic”, pp.36-99, 2004.
[20] U.S. Department of Energy (DOE) Office of Science Laboratory, “Recommended beat practices for the characterization of storage properties of hydrogen storage materials”, pp.22-29, November 30, 2009.
[21] U.S. Department of Energy (DOE) Office of Science Laboratory, “FY 2009 Annual progress report - Hydrogen storage sub-program overview”, pp.391-395, November 30, 2009.
[22] U.S. Department of Energy (DOE) Office of Science Laboratory, “Go/no-go recommendation for sodium borohydride for on-board vehicular hydrogen storage”, pp.3-4, November, 2007.
[23] U.B. Demirci, O. Akdim and P. Miele, “Ten-year efforts and a no-go recommendation for sodium borohydride for on-board automotive hydrogen storage”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.2638-2645.
[24] U.S. Department of Energy Office (DOE) of Science Laboratory, “Basic Research Needs for the Hydrogen Economic”, pp.36-99, 2004.
[25] L. Zaluski, A. Zaluska and J. O. Strom- Olsen, “Hydrogenation properties of complex alkali metal hydrides fabricated by mechano- chemical synthesis”, J Alloy. Compd., vol.290, 1999, pp.71-78.
[26] A.E. Finholt, A.C. Bond Jr. and H.I. Schlesinger, “Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry”, J. Am. Chem. Soc., Vol.69, 1947, pp.2692-2696.
[27] A.E. Finholt, G.D. Barbaras, G.K. Barbaras, G. Urry, T. Wartik and H.I. Schlesinger, “The preparation of sodium and calcium aluminum hydrides”, J. Inorg. Nucl. Chem., Vol.1, 1955, pp.317-325.
[28] A.F. Holleman, E. Wiberg, N. Wiberg, (2007). Lehrbuch der Anorganischen Chemie, 102nd ed., de Gruyter. ISBN 978-3-11-017770-1.
[29] L.I. Zakharkin and V.V. Gavrilenko, “A simple method for the preparation of sodium and potassium aluminium hydrides”, Bull. Acad Sci. USSR, Vol.10, 1961, pp.2246-2248.
[30] P. Claudy, B. Bonnetot, J.P. Bastide and J.M. Letoffe, ” Reactions of lithium and sodium aluminum hydride with sodium or lithium hydride. Preparation of a new alumino-hydride of lithium and sodium LiNa2AlH6”, Mater. Res. Bull., Vol.17, 1982, pp.1499-1505.
[31] J.S. Cha and H.C. Brown, “Reaction of sodium aluminum hydride with selected organic compounds containing representative functional groups. Comparison of the reducing characteristics of lithium and sodium aluminum hydrides”, J. Org. Chem., Vol.58, 1993, pp.4727-4733.
[32] G.E. Nelson, W.E. Becker and P. Kobetz, German Disclosure 1809264 (1969)
[33] T.N. Dymova, Yu.M. Dergachev, V.A. Sokolov and N.A. Grechanaya, Dokl. Akad. Nauk SSSR, Vol.224, 1975, pp.591-599.
[34] T.N. Dymova, N.G. Eliseeva, S.I. Bakum and Yu.M. Dergachev, Dokl. Akad. Nauk SSSR, Vol.215, 1974, pp.1369-1376.
[35] 張青蓮等著,無機化學叢書,第一卷,科學出版社,北京,民國71年,pp.22-23。
[36] T.N. Dymova, D.P. Aleksandrov, V.N. Konoplev, T.A. Silina and N.T. Kuznetzov, Russ. J. Coord. Chem., Vol.19, 1993, pp.607-614.
[37] J. Huot, S. Boily, V. Guther and R. Schulz, “Synthesis of Na3AlH6 and Na2LiAlH6 by mechanical alloying”, J Alloy. Compd., Vol.283, 1999, pp.304-306.
[38] A. Zaluska and L. Zaluski, “New catalytic complexes for metal hydride system“, J Alloy. Compd., Vol.404-406, 2005, pp.706-711.
[39] A. Zaluska, L. Zaluski and J. O. Ström-Olsen, “Lithium-beryllium hydrides: the lightest reversible metal hydrides”, J Alloy. Compd., Vol.307, 2000, pp.157-166.
[40] A. Zaluska, L. Zaluski and J.O. Ström-Olsen, “Sodium alanates for reversible hydrogen storage”, J Alloy. Compd., Vol.298, 2000, pp.125-134.
[41] L. Zaluski, A. Zaluska and J.O. Ström-Olsen, “Hydrogenation properties of complex alkali metal hydrides fabricated by mechano-chemical synthesis”, J Alloy. Compd., Vol.290, 1999, pp.71-78.
[42] S.S. Liu, L.X. Sun, Y. Zhang, F. Xu, J. Zhang, H.L. Chu, M.Q. Fan, T. Zhang, X.Y. Song and J.P. Grolier, “Effect of ball milling time on the hydrogen storage properties of TiF3-doped LiAlH4”, Int J Hydrogen Energy, Vol.34, 2009, pp.8079-8085.
[43] V.P. Balema, J.W. Wiench, K.W. Dennis, M. Pruski and V.K. Pecharsky, “Titanium catalyzed solid-state transformation in LiAlH4 during high-energy ball-milling”, J Alloy. Compd., Vol.329, 2001, pp.108-114.
[44] J. Chen, N. Kuriyama, Q. Xu, H.T. Takeshita and T. Sakai, “Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6”, J Phys Chem B, Vol.105, 2001, pp.11214-11220.
[45] M. Resan, M.D. Hampton, J.K. Lomness and D.K. Slattery, “Effect of TixAly catalysts on hydrogen storage properties of LiAlH4 and NaAlH4”, Int J Hydrogen Energy, Vol.30, 2005, pp.1417-1421.
[46] M. Resan, M.D. Hampton, J.K. Lomness and D.K. Slattery, “Effect of various catalysts on hydrogen release and uptake characteristics of LiAlH4”, Int J Hydrogen Energy, Vol.30, 2005, pp.1413-1416.
[47] X.P. Zheng, X.H. Qu, I.S. Humail, P. Li and G.Q. Wang, “Effects of various catalysts and heating rates on hydrogen release from lithium alanate”, Int J Hydrogen Energy, Vol.32, 2007, pp.1141-1144.
[48] H.W. Brinks, A. Fossdal, J.E. Fonnelop and B.C. Hauback, “Crystal structure and stability of LiAlD4 with TiF3 additive”, J Alloy. Compd., Vol. 397, pp.291-295.
[49] V.P. Balema, K.W. Dennis and V.K. Pecharsky, “Rapid solid-state transformation of tetrahedral [AlH4]- into octahedral [AlH6]- in lithium aluminohydride”, Chem. Commun., Issue 17, 2000, pp.1665-1666.
[50] D.S. Easton, J.H. Schneibel and S.A. Speakman, “Factors affecting hydrogen release from lithium alanate (LiAlH4)”, J Alloy. Compd., Vol.398, 2005, pp.245-248.
[51] D. Blanchard, H.W. Brinks, B.C. Hauback and P. Norby, “Desorption of LiAlH4 with Ti- and V-based additives”, Mater Sci Eng B, Vol.108, 2004, pp.54-59.
[52] J.R. Ares, K.F. Aguey-Zinsou, M. Elsaesser, X.Z. Ma, M. Dornheim and T. Klassen et al., “Mechanical and thermal decomposition of LiAlH4 with metal halides”, Int J Hydrogen Energy, Vol.32, 2007, pp.1033-1040.
[53] X.P. Zheng, P. Li, I.S. Humail, F.Q. An, G.Q. Wang and X.H. Qu, “Effect of catalyst LaCl3 on hydrogen storage properties of lithium alanate (LiAlH4)”, Int J Hydrogen Energy, Vol.32, pp.4957-4960.
[54] Y. Suttisawat, P. Rangsunvigit, B. Kitiyanan, N. Muangsin and S. Kulprathipanja, “Catalytic effect of Zr and Hf on hydrogen desorption/ absorption of NaAlH4 and LiAlH4”, Int J Hydrogen Energy, Vol.32, 2007, pp.1277-1285.
[55] A. Andreasen, “Effect of Ti-doping on the dehydrogenation kinetic parameters of lithium aluminum hydride”, J Alloy. Compd., Vol.419, 2006, pp.40-44.
[56] L.H. Kumar, B. Viswanathan and S.S. Murthy, “Dehydriding behavior of LiAlH4 - the catalytic role of carbon nanofibres”, Int J Hydrogen Energy, Vol.33, 2008, pp.366-373.
[57] X. Zheng, P. Li and X. Qu, “Effect of additives on the reversibility of lithium alanate (LiAlH4)” Rare Metal Mat. Eng., Vol.38, 2009, pp.766-769.
[58] X. Zhang and S. Liu, “Effect of LaCl3 and Ti on hydrogen storage properties of NaAlH4 and LiAlH4”, Rare Metal Mat. Eng., Vol.38, 2009, pp.1328-1332.
[59] T. Sun, C.K. Huang, H. Wang, L.X. Sun and M. Zhu, “The effect of doping NiCl2 on the dehydrogenation properties of LiAlH4”, Int J Hydrogen Energy, Vol.33, 2008, pp.6216-6221.
[60] M. Ismail, Y. Zhao, X.B. Yu and S.X. Dou, “Effect of NbF5 addition on the hydrogen storage properties of LiAlH4”, Int J Hydorgen Energy, Vol.35, 2010, pp.2361-2367.
[61] F. W. Dafert and R. Miklauz, “Über einige neue Verbindungen von Stickstoff und Wasserstoff mit Lithium“, Monatsh. Chem., Vol. 31, 1910, pp.981-987.
[62] P. Chen, Z. Xiong, J. Lin and K. L. Tan, “Interaction of hydrogen with metal nitrides and imides”, Nature, Vol. 420, 2002, pp.302-304.
[63] W. Luo, “(LiNH2–MgH2): a viable hydrogen storage system“, J Alloy. Compd., Vol. 381, 2004, pp.284-289.
[64] H. Y. Leng, T. Ichikawa, S. Hino, N. Hanada, S. Isobe and H. Fujji, “New Metal−N−H System Composed of Mg(NH2)2 and LiH for Hydrogen Storage”, J. Phys. Chem. B, Vol. 108, 2004, pp.8763-8769.
[65] Z. Xiong, G. Wu, J. Hu and P. Chen, “Ternary imides for hydrogen storage”, Adv. Mater., Vol. 16, 2004, pp.1522-1525.
[66] Y. Nakamori, G. Kitahara and S. Oriom, ”Synthesis and dehydriding studies of Mg–N–H systems”, J. Power Sour., Vol. 138, 2004, pp.309- 315.
[67] R. Janot, J.-B. Eymery and J.-M. Tarascon, ”Investigation of the processes for reversible hydrogen storage in the Li–Mg–N–H system”, J. Power Sour., Vol. 164, 2007, pp.496-502.
[68] R.R. Shahi, T.P. Yadav, M.A. Shaz and O.N. Srivastva, “Studies on dehydrogenation characteristic of Mg(NH2)2/LiH mixture admixed with vanadium and vanadium based catalysts (V, V2O5 and VCl3)”, Int. J. Hydrogen Energy, Vol.35, 2010, pp.238-246.
[69] J. Wang, H. Li, S. Wang, X. Liu, Y. Li and L. Jiang, “The desorption kinetics of the Mg(NH2)2 + LiH mixture”, Int. J. Hydrogen Energy, Vol.34, 2009, pp.1411-1416.
[70] R.R. Shahi, T.P. Yadav, M.A. Shaz and O.N. Srivastava, “Effects of mechanical milling on desorption kinetics and phase transformation of LiNH2/MgH2 mixture”, Int. J. Hydrogen Energy, Vol.33, 2008, pp.6188-6194.
[71] T. Ichikawa, K. Tokoyoda, H. Leng and H. Fujii, “Hydrogen absorption properties of Li-Mg-N-H system”, J. Alloy. Compd., Vol. 400, 2005, pp.245-248.
[72] K. Okamoto, K. Tokoyoda, T. Ichikawa and H. Fujii, A process for synthesizing the Li-Mg-N-H hydrogen storage system from Mg and LiNH2, J. Alloy. Compd., Vol.432, 2007, pp.289-292.
[73] M. Aoki, T. Noritake, G. Kitahara, Y. Nakamori, S. Towata and S. Orimo, “Dehydriding reaction of Mg(NH2)2–LiH system under hydrogen pressure”, J. Alloy. Compd., Vol. 428, 2007, pp.307-311.
[74] Y. Liu, F. Wang, Y. Cao, M. Gao and H. Pan, Reversible hydrogenation/ dehydrogenation performances of the Na2LiAlH6- Mg(NH2)2 system, Int. J. Hydrogen Energy, 2010, doi:10.1016/j.ijhydene. 2009.12.005.
[75] J. Lu, Z. Z. Fang, Y. J. Choi and H. Y. Sohn, “Potential of Binary Lithium Magnesium Nitride for Hydrogen Storage Applications”, J. Phys. Chem. C, Vol.111, 2007, pp.12129-12134.
[76] J. Lu, Y.J. Choi, Z.Z. Fang and H.Y. Sohn, “Effect of milling intensity on the formation of LiMgN from the dehydrogenation of LiNH2-MgH2 (1:1) mixture”, J. Power Sources, Vol.195, 2010, pp.1992-1997.
[77] W. Osborn, T. Markmaitree and L.L. Shaw, “Evaluation of the hydrogen storage behavior of a LiNH2+MgH2 system with 1:1 ratio”, J. Power Sources, Vol.172, 2007, pp.376-378.
[78] H. Yamane, T. Kano, A. Kamegawa, M. Shibata, T. Yamada, M. Okada and M. Shimada, “Reactivity of hydrogen and ternary nitrides containing lithium and 13 group elements”, J Alloy. Compd. Vol.420, 2005, pp.L1-L3.
[79] P. Chen, Z. Xiong, G. Wu, Y. Liu, J. Hu and W. Luo, “Metal-N-H systems for the hydrogen storage”, Scr. Mater., Vol.56, 2007, pp.817-822.
[80] Z. Xiong, G. Wu, J. Hu, Y. Liu, P. Chen, W. Luo and J. Wang, “Reversible hydrogen storage by a Li-Al-N-H complex”, Adv. Funct. Mater., Vol.17, 2007, pp.1137-1142.
[81] H.W. Langmi and G.S. McGrady, “Ternary nitrides for hydrogen storage: Li-B-N, Li-Al-N and Li-Ga-N systems”, J Alloy. Compd., Vol.466, 2008, pp.287-292.
[82] H.W. Langmi, S.D. Culligan and G.S. McGrady, “Mixed-metal Li3N-based systems for hydrogen storage: Li3AlN2 and Li3FeN2”, Int J Hydrogen Energy, Vol.34, 2009, pp.8018-8114.
[83] K.N. Ishihara, F. Kubo, K. Irie, K. Shichi, E. Yamasue and H. Okumura, “Mechanical alloying of lithium-base systems”, J. Alloys Compd., Vol.434-435, 2007, pp.542-545.
[84] W. Ha, H.-S. Lee, J.-I. Youn, T.-W. Hong and Y.-J. Kim, “Hydrogenation and degradation of Mg–10 wt% Ni alloy after cyclic hydriding–dehydriding”, Int. J. Hydrogen Energy, Vol.32, 2007, pp.1885-1889.
[85] C. D. Yim, B. S. You, Y. S. Na and J. S. Bae, “Hydriding properties of Mg–xNi alloys with different microstructures”, Catal. Today, Vol.120, 2007, pp.276-280.
[86] J.R. Davis, Davis and Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys, 1993, p. 550.
[87] C.W. Hsu, S.L. Lee, R.R. Jeng and J.C. Lin, “Mass production of Mg2Ni alloy bulk by isothermal evaporation casting process”, Int. J. Hydrogen Energy, Vol.32, 2007, pp.4907-4911.
[88] 梁基謝夫主編,郭青蔚等譯,化學工業出版社,北京,民國98年,p.98。
[89] 維基百科-鋰(Lithium)。取自http://zh.wikipedia.org/zh-tw/Li。
[90] C. Milanese, A. Girella, G. Bruni, V. Berbenni, P. Cofrancesco, A. Marini, M. Villa and P. Matteazzi, “Hydrogen storage in magnesium– metal mixtures: Reversibility, kinetic aspects and phase analysis”, J. Alloys Compd., Vol.465, 2008, pp.396-405.
[91] X.L.Wang, J.P. Tu, P.L. Zhang, X.B. Zhang, C.P. Chen and X.B. Zhao, “Hydrogenation properties of ball-milled MgH2-10wt.%Mg17Al12 composite”, Int. J. Hydrogen Energy, Vol.32, 2007, pp.3406-3410.
[92] C.X. Shang, M. Bououdina1, Y. Song and Z.X. Guo, “Mechanical alloying and electronic simulations of (MgH2+M) systems (M=Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage”, Int. J. Hydrogen Energy, Vol.29, 2004, pp.73-80.
[93] O. Palumbo, A. Paolone, R. Cantelli and D. Chandra, “Lithium nitride as hydrogen storage material”, Int. J. Hydrogen Energy, Vol.33, 2008, pp.3107-3110.
指導教授 林志光、李勝隆
(Chih-Kuang Lin、Sheng-Long Lee)
審核日期 2010-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明