博碩士論文 953403019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.233.242.204
姓名 廖志曄(Chih-Yeh Liao)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 固體火箭發動機界面黏接強度改善與安全評估之研究
(A study on improving the bond strength of interface in solid rocket motor and safety evaluation)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在固體火箭發動機中,推進劑與襯層界面黏接良好能確保推進劑裝藥按設計燃燒。若界面產生脫膠,將使裝藥燃面發生變化,不但影響設計性能,也會造成發動機失效。本研究以二具發動機的失效現象,探討如何提升推進劑藥柱與襯層界面的黏接強度,使其黏接強度大於8㎏/㎝2的設計要求。針對端羥基聚丁二烯(HTPB)原料以真空(5-20 torr)及加熱溫度控制在60-70℃範圍,並分別增加襯層內TDI含量2%、5%、10%、15%及21.5%,使NCO/OH的當量比值分別為1.035、1.056、1.087、1.139、1.190及1.258進行黏接強度測試與分析。驗證結果黏接強度呈現隨著TDI固化劑量增加而增強的趨勢,襯層原料之HTPB加熱、抽真空並搭配TDI正常量+15 %可以達到黏接強度的要求。
高能量、高燃速固體推進劑是推進劑領域重要的發展方向,添加奈米金屬粉作為燃燒活性劑是提升固體推進劑燃速和能量的有效方法之一。粉塵爆炸是由可燃顆粒物懸浮在空氣中迅速燃燒所引發,本研究在銀粉塵濃度0.8 g/L的爆炸測試實驗中,鋼球體內之最大壓力無明顯增加;測試後殘餘的微細固體顆粒也沒有證據顯示燃燒反應。此外,鋁粉、RDX粉塵及其兩者的混合物進行了粉塵爆炸的行為進行粉塵爆炸實驗,當混合粉塵中鋁及RDX的含量不同,則混合粉塵爆炸時的最大壓力上升速率也遵循不同的規律。在推進劑的製造過程中,高濃度粉塵的使用是不可避免的。為了安全處理可燃性粉塵的危害,首要確認粉塵的爆炸程度與降低粉塵爆炸的風險。然而,由於爆炸過程的複雜性,粉塵爆炸測試可先以爆炸參數與最低易爆濃度進行風險評估。如何分析和識別固體推進劑製造過程的危險源與控制危險事故的發生及發生事故後如何將損失降到最低,都是安全工作的重點。
摘要(英) In solid rocket motors, a strong bond at the propellant–liner interface ensures that the propellant functions as designed. If the interface degums, the propellant burn surface area will change and the performance of internal ballistics will be adversely affected. In this study, we considered two cases of motor failure to investigate methods for improving the bond strength between the propellant grain and the liner interface with the aim of achieving a tensile strength exceeding the 8 kg/cm2 requirement. We considered hydroxyl-terminated polybutadiene (HTPB) as the liner material. The HTPB-based material was conditioned and processed under the conditions of 5 to 20 torr pressure and 60°C to 70°C temperature. Further, we considered toluene diisocyanate (TDI) as the hardener and increased its contents in the liner by 0% (i.e. original content), 2%, 5%, 10%, 15% and 21.5% in order to obtain NCO/OH equivalence ratios of 1.035, 1.056, 1.087, 1.139, 1.190 and 1.258, respectively. Thereafter, bond strength tests and analyses were conducted. The tensile strength gradually increased with increasing TDI content in the liner. The bond strength was found to increase after improving the liner, performing HTPB heating and vacuum extraction pretreatments, and increasing the TDI content by 15%.
With the development of modern weapons, one of the development trends in solid propellants is to provide higher energy and burning rate. Adding a nano-metal catalyst to the propellant is an effective method for improving the burning rate and the energy of a solid propellant. A dust explosion is triggered by the rapid combustion of burnable particulate matter suspended in air. In the explosion tests, no apparent increase in pressure above that found in the blank tests was observed for Ag dust cloud with a concentration of 0.8 g/L. In addition, fine solid particles remaining after the tests showed no evidence of a combustion reaction at the end of the tests. In addition, the dust explosion behaviors of aluminum powder, RDX, and their mixtures were studied. In many manufacturing processes of propellants, high dust concentrations are unavoidable. To address the safety issues related to combustible dust, it is imperative to determine and mitigate the dust explosion risks. However, owing to the complexity of the explosion processes, dust explosion risks can be identified only by determining the explosion parameters, particularly the minimum explosible concentration of dust. It is important to analyze and identify the hazards related to manufacturing solid propellants and reduce the risk of accidents.
關鍵字(中) ★ 推進劑
★ 襯層
★ 粉塵爆炸
關鍵字(英) ★ Propellant
★ Liner
★ Explosive
★ Dust explosion
論文目次 摘 要 v
Abstract vii
誌謝 ix
目 錄 x
圖目錄 xiii
表目錄 xvii
符號說明 xviii
一、緒論 1
1-1 前言 1
1-2 研究背景與目的 3
1-2-1研究背景 3
1-2-2 研究目的 5
二、文獻回顧與基礎理論 8
2-1 複合推進劑概述 8
2-2 固體火箭發動機界面黏接強度相關研究與文獻 12
2-3 固體火箭發動機襯層技術的發展 13
2-4 固體火箭發動機界面脫膠的原因探討 17
2-5 固體火箭發動機安全評估測試構想 22
2-6 固體推進劑的危險性與粉塵爆炸危害 27
三、固體火箭發動機界面強度與安全評估實驗規劃 32
3-1 固體火箭發動機安全評估測試項目規劃 32
3-2 推進劑藥柱與襯層材料強度實驗 34
3-2-1材料特性測試與樣品製作 34
3-2-2推進劑藥柱與襯層黏接強度拉伸實驗 38
3-2-3 推進劑及襯層黏接性能測試樣品製作 38
3-2-4襯層與推進劑黏度、抗拉強度與延伸率測試 39
3-3 推進劑添加物-銀粉、鋁粉、RDX安全評估實驗 43
3-3-1實驗裝置-20公升爆炸鋼球實驗 45
3-3-2銀粉爆炸濃度0.8 g/L測試 49
3-3-3 熱分析實驗 49
3-3-4 鋁粉、RDX粉塵爆炸特性實驗 50
四、實驗與結果與討論 52
4-1 推進劑黏度、抗拉強度與延伸率測試結果 52
4-2 襯層抗拉強度與延伸率與儲存老化特性測試結果 55
4-3 襯層/推進劑儲存過程中環境對界面黏接性能測試結果 58
4-4 固體火箭發動機襯層固化對界面黏接強度影響測試結果 62
4-5 固體火箭發動機界面黏接強度改善測試結果 69
4-6 固體火箭發動機界面黏接強度改善測試結果 71
4-7 推進劑添加物-銀粉、鋁粉、RDX安全評估實驗結果 78
4-7-1 銀粉組成量測與熱分析結果 78
4-7-2 粉塵爆炸測試結果 85
4-7-3 推進劑添加物-鋁粉、RDX粉塵爆炸特性實驗結果 89
4-7-4 粉塵爆炸的影響因素與強度分級 94
五、結論 97
參考文獻 103
參考文獻 [1]M. S. Sureshkumar, C. M. Bhuvaneswari, S. D. Kakade and M. Gupta,“Studies on the properties of EPDM-CSE blend containing HTPB for case-bonded solid rocket motor insulation”, Polymers for Advanced Technologies, Vol 19, pp.144–150, 2008.
[2]J. Götz,“Characterization of the structure in highly filled composite materials by means of MRI”, Propellants, Explosives, Pyrotechnics, 27(3), pp. 179–184, 2002.
[3]J. L. Fuente and O. Rodríguez,“Dynamic mechanical study on the thermal aging of a hydroxyl-terminated polybutadiene-based energetic composite”, Journal of Applied Polymer,Vol87, pp.2397–2405, 2003.
[4]F. Zhao, S. Heng, R.Hu, H. Gao and F. Han,“A study of kinetic behaviours of the effective centralite/stabilizer consumption reaction of propellants using a multi-temperature artificial accelerated ageing test”, Journal of hazardous materials, Vol 145, pp.45–50, 2007.
[5]J. H.Yi, F. Q. Zhao, W. L. Hong, S. Y. Xu, R.Z. Hu, Z. Q. Chen, and L. Y. Zhang, “Effects of Bi-NTO complex on thermal behaviors, nonisothermal reaction kinetics and burning rates of NG/TEGDN/NC propellant”, Journal of hazardous materials, Vol 176, pp.257–261, 2007.
[6]M.D.Judge,“An investigation of composite propellant accelerated ageing mechanisms and kinetics”, Propellants, Explosives, Pyrotechnics ,Vol 28, pp.114–119, 2003.
[7]ASTM (American Society for Testing and Materials) ,“Standard Test Methods for Vulcanized Rubber and Thermoplastic Rubbers and Thermoplastic Elastomers-Tension”, American Soc. for Testing and Materials D412-98a, West Conshohocken, PA,2002.
[8]F. M.Grafton, J. W.Carl and Huntsville.,“Liner configuration for solid propellant rocket motor”, United States Patent, 1969.
[9]H. W.Douglass, J. H. Collins, J. S.Noel, et al.“Solid propellant grain structuralintegrity analysis”, NASA Space Vehicle Design Criteria (Chemical propulsion), NASA-SP-8073, 1973.
[10]R. J. Amos,“Viscoelastic analysis of Cast Double Base propellant rocket motor grains”,AIAA, SAE, ASME, and ASEE, Joint Propulsion Conference and Exhibit, United States, 1993.
[11]L. H.Robert, F. M. Clyde and B. Anthony, “Rocket propellant charge and liner therefor”, United States Patent, 2780966, February 1957.
[12]A. M. Pang, , and J. Zheng, , “Prospect of the Research and Development of High Energy Solid Propellant Technology”, Journal of Solid Rocket Technology, Vol. 27(4), pp. 289–293,2004,
[13]G. Oertel, , Polyurethane Handbook, 2nd ed., Carl Hanser, Munich, pp.136-137,1994.
[14]J. D. Byrd, P. B. Walters, “Case bonding considerations for large rocket motors”. AAIA 76-638,1976.
[15]Z. P. Huang, H. Y.Nie, Y. Y Zhang, L. M. Tan, H. L. Yin, and X. G. Ma, “Migration kinetics and mechanisms of plasticizers, stabilizers at interfaces of NEPE propellant/HTPB liner/EDPM insulation”, Journal of hazardous materials, Vol 229, pp.251-257,2012.
[16]J. A. Condon , and Osborn J. R., “The Effect of Oxidizer Particle Size Distribution on the Steady and Nonsteady Combustion of Composite Propellants”, PURDUE UNIV LAFAYETTE IND SCHOOL OF MECHANICAL ENGINEERING, 1978.
[17]N. Wingborg,“Increasing the tensile strength of HTPB with different isocyanates and chain extenders”, Polymer Testing, 21(3), pp.283–287, 2002.
[18]S. B. Haska, E. Bayramli, F. Pekel, and S. Ozkar,“Adhesion of an HTPB-IPDI-based liner elastomer to composite matrix and metal case”, Journal of applied polymer science, 64(12), pp.2355–2362, 1997.
[19]H. L. Yin, Y. Wang, and D. F. Li, ,“Ingredient Migration and Their Effect on NEPE Propellant Bonding System”, Journal of Solid Rocket Technology, 32(5), pp.527-530,2009.
[20]S. B. Navale, S. Sriraman, V. S. Wani, M.V.Manohar, and S.D.Kakade, “Effect of Additives on Liner Properties of Case-bonded Composite Propellent”, Defence Science Journal, 54(3), pp.353-359, July 2004.
[21]S. D. Kakade, S. B. Navale, U. B. Kadam and M. Gupta,“Effect of Fillers and Fire Retardant Compound on Hydroxy-Terminated Polybutadiene-Base Insulators”, Defence Science Journal,51(2), 2001.
[22]W. M. Albert, “Liner for solid propellant rocket motor”,United States Patent, 3446018,May 1969.
[23]H S. Paul,“Liner composition for rocket motors comprising crosslinked carboxy terminated polybutadiene with inert filler”, United States Patent, 3855176, December 1974.
[24]D. B. James,and T. D. Robert, “Delayed quick solid rocket motor liner”, United States Patent,4736684,April 1988.
[25]D. B, James and T. D. Robert,“Delayed quick solid rocket motor liner”, United States Patent,4601862, July 1986.
[26]D. B, James and T. D. Robert,“Delayed quick solid rocket motor liner”,United States Patent,4663196. May 1987.
[27]H. G. William, E. B. Kenneth, D. B. James, and E. J. Kenneth,“Process for forming a liner and cast propellant charge in a rocket motor casing”, United States Patent, 4803019. I 989-02-07.
[28]R. F. Bernard and E. S. Stephen,“Liner for solid propellant rocket motor”, United States Patent, 4821511, April 1989.
[29]S. R. Gregory, F. D. Thomas and L. Timothy,“Insulating liner for solid rocket motor containing vulcanizable elastomer and a bond promoter which is a novolac epoxy or a resole treated cellulose”, United States Patent, 4956397, September 1990.
[30]E. B. Richard and E. H. Dale,“Interpenetrating network combination of ultraviolet and thermally rocket motor liner composition and Method”, United States Patent, 5377593,January 1995.
[31]D. E Hutchens and N.Cohen,“Low smoke rocket motor liner compositions”, United States Patent, 6051087. April 2000
[32]W. N. Ronald, B. L. Merylin, W. P. Larry, and K. B. Elizabeth,“Erosion resistant-low signature liner for solid propellant rocket motors”, United States Patent, 6054521,April 2000.
[33]E. W. James,“Solid propellant liner”, United States Patent,3507114, April 1970.
[34]Anon,“Solid propellant grain structure integrity analysis”, NASA Space Vehicle Design Criteria Monograph, NASA SP-8073, 1973.
[35]J. Gwendal, S. Phillippe and C. Costantino,“Measuring interfacial adhesion between a soft viscoelastic layer and a rigid surface using a probemethod”,The Journal of Adhesion, Vol 80,pp. 87-118 ,2004,.
[36]K. F.Grythe and F. K. Hansen.“Diffusion rates and the fole of diffusion in solid propellant rocket motor adhesion”, Journal of Applied Polymer ,Vol 103, pp.1529-1538,2007.
[37]Y.Y .Lin and C.Y. Hui ,“Mechanics of contact and adhesion between viscoelastic spheres: an analysis of hysteresis during loading and unloading”. Journal of Polymer Science Part B: Polymer Physics, 40(9),pp.772-793,2002,
[38]ASTM (American Society for Testing and Materials),“Standard Test Method for Dust Explosions in a 1.2-litre Closed Cylindrical Vessel” (withdrawn 2007), ASTM E789-95, West Conshohocken, PA: American Society for Testing and Materials. 2001.
[39]ASTM (American Society for Testing and Materials),“Standard Test Method for Minimum Explosible Concentration of Explosible Dusts”, ASTM E1515-07, West Conshohocken, PA: American Society for Testing and Materials,2007.
[40]ASTM (American Society for Testing and Materials),“Standard Test Method for Explosibility of Dust Clouds”, ASTM E1226. West Conshohocken, PA: American Society for Testing and Materials, 2010.
[41]W. Bartknecht, Dust Explosions: Course, Prevention, Protection, Berlin, Springer-Verlag , 1989
[42]L. Hertzberg, and K. Cashdollar, I. Zlochower, and D. L. Ng,“Inhibition and Extinction of Explosions in Heterogeneous Mixtures”, Symposium (International) on Combustion ,20(1),1691-1700, 1985.
[43]P. Holbrow, M. Wall, E. Sanderson, D. Bennett, W. Rattigan, and R. Bettis, Fire and Explosion Properties of Nanopowders, RR782. Buxton: UK Health and Safety Executive,2010.
[44]S. Mannan ,3“Lee′s Loss Prevention in the Process Industries-Hazard Identification”, Assessment and Control ,Vol 2, London: Butterworth-Heinemann,1996.
[45]M. Nifuku, and H. Katoh,“Incendiary Characteristics of Electrostatic Discharge for Dust and Gas”, Journal of Loss Prevention in the Process Industries ,14 (6),pp.547-551, 2001
[46]F. Schuster, and J. Bouillard. NANOSAFE2: Safe Production and Use of Nanomaterials, European Project .No. 515843-2, Grenoble : MINATEC, 2005–2009.
[47]A.Vignes, F. Muñoz, J. Bouillard, O. Dufaud, L. Perrin, A. Laurent, and D. Thomas “Risk Assessment of the Ignitability and Explosivity of Aluminum Nanopowders”, Process Safety and Environmental Protection ,90(4), pp.304-310,2012.
[48]S. Vyazovkin and C. A. Wright,“Model-free and Model-fitting Approaches to Kinetic Analysis of Isothermal and Nonisothermal Data”, Thermochimica 340-341(1),pp.53-68,1999
[49]H. C. Wu, H. J. Ou, H. C. Hsiao, and T, S ,Shih. “Explosion Characteristics of Aluminum Nanopowders”,Aerosol and Air Quality Research ,Vol 10,pp.38–42,2010.
指導教授 李雄(Shyong Lee) 審核日期 2015-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明